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Chapter 1

Introduction

1.1 Research overview

My research work concerns developing automated methods for stability analysis,
controller and observer design for nonlinear systems represented by Takagi-Sugeno
(TS) (Takagi and Sugeno, 1985) fuzzy models. The TS model is a convex combina-
tion of linear models. This structure facilitates analysis and design by using effective
algorithms based on Lyapunov functions and linear matrix inequalities. TS models
are known to be universal approximators and, in addition, a broad class of nonlinear
systems can be exactly represented as a TS system. In the last three decades, within
a mathematically rigorous framework, several results concerning such models have
been developed. The TS representation in principle can adapt the advantages of linear
time-invariant system-based design to nonlinear systems.

Analysis and controller and observer synthesis for TS models are usually per-
formed using Lyapunov’s direct method, employing – classically – a quadratic, more
recently, nonquadratic Lyapunov functions. Since there are efficient algorithms to
solve linear matrix inequalities (LMIs), the goal is to develop the stability or design
conditions in such a form. My recent works involve analysis and design for discrete-
time TS systems.

In the discrete time case, non-quadratic Lyapunov functions brought a significant
improvement (Guerra and Vermeiren, 2004; Ding et al., 2006; Dong and Yang, 2009;
Lee et al., 2011) in the development of global stability and design conditions. They
also allow some relaxations by calculating this difference between α – instead of the
usual two – consecutive instants (Kruszewski et al., 2008) or by considering delayed
Lyapunov functions (Lendek et al., 2015). It has been proven that the solutions ob-
tained by non-quadratic Lyapunov functions include and extend the set of solutions
obtained using the quadratic framework. More recently, by using Polya’s theorem
(Montagner et al., 2007; Sala and Ariño, 2007) asymptotically necessary and suffi-
cient (ANS) LMI conditions have been obtained for stability in the sense of a chosen
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4 CHAPTER 1. INTRODUCTION

quadratic or nonquadratic Lyapunov function. Ding (2010) gave ANS stability con-
ditions for general membership function-dependent Lyapunov matrix. By increasing
the complexity of the homogeneously polynomially parameter-dependent Lyapunov
functions, in theory any sufficiently smooth Lyapunov function can be approximated.
Unfortunately, the number of LMIs that have to be solved increase quickly, leading
to numerical intractability (Zou and Yu, 2014). For all these results, if the developed
conditions are feasible, then stability of the corresponding system is ensured glob-
ally – actually in the largest Lyapunov level set included in the domain where the
TS model is defined. However, it is possible that stability (of the closed-loop sys-
tem or error dynamics, as might be the case) cannot be ensured on the full domain
where the TS model is defined. Thus, the control and estimation problems remain
highly challenging due to the computational limitations and conservatism of existing
methods.

My postdoctoral and more recent work focuses strongly on design methods for
systems exhibiting a structure, such as periodic or switching. My main goal was
to incorporate the known structure in the design steps and in this way reduce the
conservativeness of the conditions for computing the controller.

Periodic and switching models can be found in numerous domains such as auto-
motive, aeronautic, aerospace and even computer control of industrial process. For
example in (Chauvin et al., 2005), a periodic dynamic model is used to estimate the
air/fuel ratio in each cylinder on an internal combustion engine, Gaiani et al. (2004)
proposed a periodic model for the rotor blades of helicopter, etc. Switching mod-
els are also frequently encountered in control problems concerning HCCI combus-
tion (Liao et al., 2013), air path with turbocharger (Nguyen et al., 2012b,a, 2013),
clutch actuator control (Langjord et al., 2008).

In the literature, mainly continuous time switching systems were considered but
recently discrete time approaches have also been developed (Chen et al., 2012; Duan
and Wu, 2012; Hetel et al., 2011). Stabilization and tracking conditions for continuous-
time linear switching systems have been developed in (Baglietto et al., 2013; Battis-
telli, 2013), delay-dependent stabilization in (Kim et al., 2008), and observability
with unknown input has been investigated in (Boukhobza and Hamelin, 2011).

The first major part of the thesis deals with discrete-time nonlinear periodic and
switching systems represented by TS models, where the subsystems may be unsta-
ble or uncontrollable/ unobservable. Using a periodic or switching non-quadratic
Lyapunov function, conditions to establish stability and to design observers and con-
troller are presented. Furthermore, it is well-known that by switching between two
– independently stable – subsystems the switching system can be destabilized and
conversely, by switching between unstable subsystems, the states can be made to
converge to zero. The design of a switching law that stabilizes a given switching
system – and the conditions under which such a law exists – is also presented.

The second major part of this thesis deals with a different problem. Many non-
linear systems have several equilibrium points, thus existing methods in the discrete-
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time TS framework – which involve global conditions – cannot establish stability of
such points. Furthermore, one of the main points of interest is the determination of
an estimate of the domain of attraction of an equilibrium point. Using a quadratic
Lyapunov function, a quadratic domain may be obtained, but this can be restrictive
compared to the true domain of attraction. Current nonquadratic results, such as the
one in (Lee et al., 2013) requires the knowledge of some a priori bounds on the varia-
tion of the membership functions over time, while in (Lee and Joo, 2014) the bounds
on the derivative of the membership function with respect to the scheduling variables
are introduced in the stability conditions. This procedure is complex and can be com-
putationally expensive, especially for practical implementation. Thus, this part of the
thesis presents methods for local stability analysis and local controller and observer
design for TS models. The tools existing in the discrete TS framework are com-
bined with the determination of a non-quadratic domain of attraction using an easy
procedure requiring only the knowledge of the membership functions.

The above two directions, switching systems and local analysis and design, com-
prise the main thrust of my post-PhD research. Additional research directions, and
applications are reviewed in separate chapters. Direct offshoots of my PhD research
are not discussed, even if they were done or published after the PhD. The same ap-
plies to work where I participated but did not take a leading role.

1.2 Advising and management activities

Throughout my research I have been managing several student projects, in the Nether-
lands, in France and in Romania. I have been leading as coadvisor 2 PhD students,
one in the Netherlands and one in France, one of whom graduated in 2013 and one in
2015; I have also co-advised 2 visiting PhD students at TUDelft and 1 MSc student;
and 4 Master and 15 Bachelor students in Romania. With my students, I investigated
an agenda of control topics and applications complementary to my main research
lines, see Chapter 12.

I have successfully acquired funding for my research in three national projects
funding young teams (projects PN-II-RU-TE-2011-3-0043, PN-II-RU-TE-2014-3-
0942, and PN-III-P1-1.1-TE-2016-1265) over the period 2011-2018; one interna-
tional cooperation project (ESA 4000123993/18/NL/CRS); as well as an internal
grant within a 2013 funding initiative at the Technical University of Cluj-Napoca,
Romania. I have also been involved in local project management in French, Dutch,
and Romanian research projects.

I have organized and co-organized several successful special sessions at the IEEE
International Conference on Fuzzy Systems, IEEE World Congress on Computational
Intelligence and IFAC World Congress; I am Associate Editor at Engineering Ap-
plications of Artificial Intelligence (IF 2.819), and have been Editor at the 4th IFAC
International Conference on Intelligent Control and Automation Sciences, 2016; spe-
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cial session chair at the IEEE International Conference on Automation, Quality and
Testing, Robotics, 2014, 2016, etc.

1.3 Teaching activities

In my work so far, I have been involved in the Dutch and Romanian academic sys-
tems. My teaching career has begun in 2004, during my postgraduate studies at the
Technical University of Cluj-Napoca, when I taught practical classes for the disci-
plines Optimization techniques, and Control theory. At the same place, but in the
complementary role of student, I was exposed directly to the scientific literature, in
course projects that required the critical investigation and evaluation of methods pro-
posed in published papers.

Later, at the Technical University of Delft, as a course assistant at DCSC, I have
been teaching practical sessions and developing assignments for the course Modeling
and system analysis. For the relatively small groups (up to 50 students), constant
interaction, entailing open questions, searching for possible applications, exercise
solving, relating to state-of-the-art results in the literature, bonus questions were a
way both for motivating the students and their efficient learning incited researching
and innovation.

My independent teaching career started in 2011 at the Technical University of
Cluj-Napoca, where I was first lecturer (October 2011), then associate professor (Oc-
tober 2013). I am currently leading the disciplines Optimization and Estimation for
control, including lecture, laboratory, project, and examination work.

I have also been invited to present my research at universities from France and
Spain. Overall, my expertise familiarized me with the full spectrum of teaching skills
needed in a University teaching career.

1.4 Outline of the thesis

This thesis is structured as follows. After the present introduction, Part I describes
some necessary background, and the use of general delayed Lyapunov functions for
control. The main content is structured in two parts along the two major threads
of work presented above. Namely, Part II focuses on developments in analysis and
design for switching systems, while Part III on local analysis and design. At the end,
in Part IV, other research directions are outlined, and an overall plan for the future
is delineated. For easy reference, local lists of references are provided at the end of
each part.

Both of the main Parts, II and III, are structured in a similar way: after a brief
outline, the major research contributions in that direction are presented, in separate
chapters for stability analysis, controller design, and observer design. The results in
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each case are discussed and illustrated on examples in the particular chapter; exten-
sions and generalizations are also presented in the corresponding chapters.

The two parts can be read independently. Since in effect the controller and ob-
server design in each part are extensions from stability analysis, the corresponding
analysis chapter is needed to understand them. Furthermore, the generalizations make
use of the results presented in Chapter 3. Within each chapter, some occasional back-
tracking may be necessary to find the description of examples used multiple times,
which are only presented in detail once, the first time they are used.

1.5 Acknowledgments

I am grateful to all my students and collaborators for their contributions to the work
presented here. Among the students, I would like to mention especially my PhD stu-
dents Victor Estrada-Manzo and Pawel Stano; and my Master students Zoltán Nagy
and Paul Petrehuş, all of whom did significant work ending up in journal and confer-
ence publications. Long-term, extremely fruitful collaborations with Thierry-Marie
Guerra and Jimmy Lauber should also be highlighted; and of course, the contribution
of my PhD advisors Robert Babuška and Bart De Schutter with whom we are contin-
uing to work together and coauthor papers. Countless other people have contributed,
formally or informally, with scientific ideas, material, and opportunities. And, natu-
rally, without the help of family and friends this thesis would not exist. Thank you
all!

I would also like to acknowledge funding from the Romanian National Author-
ity for Scientific Research, CNCS-UEFISCDI (projects PN-II-RU-TE-2011-3-0043,
PN-II-RU-TE-2014-3-0942, and PN-III-P1-1.1-TE-2016-1265), UTCN (internal project
in 2013); and my host institutions after my PhD, in chronological order: TUDelft,
LAMIH, University of Valenciennes, and the Technical University of Cluj-Napoca.

Finally, much of this thesis is based on existing papers and books with several
publishers, including among others IEEE, Elsevier, Springer, and Wiley. The copy-
right for the material remains with the respective publishers, and I am grateful to
them for hosting my publications and reusing the material here.

To recognize that the work presented here is the result of the concerted effort and
contributions of all these individuals and organizations, the remainder of the thesis
will be written in the first person plural.





Chapter 2

Background

Several technical preliminaries from the preexisting literature are necessary to explain
the results presented in this thesis. We start by presenting the Takagi-Sugeno (TS)
fuzzy models and the notations we use throughout the thesis and the properties and
lemmas we employ. This chapter also presents the basic results from the literature
regarding stability analysis of discrete-time TS models and the way the conditions
are obtained.

2.1 Takagi-Sugeno models

Since the introduction of the concept of fuzzy sets by Zadeh (1965), fuzzy sets, fuzzy
logic, and more recently, fuzzy systems have found their use in a large set of appli-
cations (Klir and Yuan, 1995). They have been used extensively in expert systems,
applications that required a linguistic description.

A different field in which fuzzy systems have been extensively employed and
brought significant improvements is nonlinear control (Tanaka and Wang, 2001). In
this case, the usual “fuzzy”, linguistic interpretation no longer holds, but the name
fuzzy is used to denote the combination of systems. The domain has matured in the
last two decades and now an efficient and useful framework exists.

In the research described hereafter, we consider the use of fuzzy systems, specif-
ically dynamic Takagi-Sugeno fuzzy models, for the analysis and design of discrete-
time nonlinear systems of the form

xxx(k +1) = fff (xxx(k),uuu(k),θθθ(k))
yyy(k) = ggg(xxx(k),uuu(k),ζζζ (k))

(2.1)

where fff denotes the state transition function, describing the evolution of the states
over time, ggg is the measurement function, relating the measurements to the states, xxx
is the vector of the state variables, uuu is the vector of the input or control variables, yyy

9



10 CHAPTER 2. BACKGROUND

denotes the measurement vector, and θθθ and ζζζ are unknown or uncertain parameters
or disturbances.

We represent the system above by Takagi-Sugeno (TS) fuzzy model of the form

xxx(k +1) =
r

∑
i=1

hi(zzz(k))(Aixxx(k)+Biuuu(k)+ai)

yyy(k) =
r

∑
i=1

hi(zzz(k))(Cixxx(k)+ ci)
(2.2)

where r is the number of local models, Ai, Bi, Ci, are the matrices and ai and ci are the
biases of the ith local model, zzz is the vector of the scheduling variables, which may
depend on the states, inputs, measurements, or other exogenous variables, and hi, i =
1, 2, . . . , r are normalized membership functions, i.e., hi(zzz) ≥ 0 and ∑r

i=1 hi(zzz) = 1,
∀k ∈ N.

Such a model presents several advantages. The TS model is a universal approx-
imator (Fantuzzi and Rovatti, 1996), and many nonlinear systems can be exactly
represented in a compact set of state variables as TS systems (Ohtake et al., 2001).
Moreover, (2.2) is the convex combination of local affine models, which facilitates
stability analysis and controller and observer design for such systems. In addition,
many stability and design conditions for TS systems can be formulated as linear ma-
trix inequalities (Boyd et al., 1994; Scherer and Weiland, 2005; Tanaka and Wang,
1997; Tanaka et al., 1998), for which efficient algorithms exist.

Two main approaches can be used to obtain TS fuzzy models: 1) identifying the
model using measured or simulated data and 2) analytic construction of a TS model
that exactly represents or approximates a given nonlinear dynamic model.

Here we consider the second approach, i.e., constructing a TS model from the
nonlinear dynamic model. For methods for identification of TS systems the interested
reader is referred to (Driankov et al., 1993; Abonyi et al., 2002; Babuška et al., 2002;
Johansen and Babuška, 2003; Kukolj and Levi, 2004; Kaymak and van den Berg,
2004; Angelov and Filev, 2004).

Several methods exist that construct a fuzzy representation or an approximation
of a given model. Using the method described in Chapter 14 of (Tanaka and Wang,
2001) a TS fuzzy model can be constructed such that both the nonlinear system and
its derivative are approximated. Other methods that approximate a given nonlinear
system are dynamic linearization (Johansen et al., 2000), which is in fact a Taylor
series expansion in several operating points, or the substitution method developed
by Kiriakidis (2007). Furthermore, when variables are defined on a compact set,
TS models have been proven to be able to approximate any nonlinear function to
an arbitrary degree of accuracy (Wang and Mendel, 1992; Kosko, 1994; Ying, 1994;
Fantuzzi and Rovatti, 1996).

The sector nonlinearity approach (Ohtake et al., 2001) can be employed to obtain
a TS model that is an exact representation of a given nonlinear system in a consid-
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ered compact set. Note, however, that this representation is not unique. Furthermore,
depending on the choices made, the number of local models may be exponential in
the number of nonlinearities, which may lead to intractable design problems. There-
fore, unless instability, unobservability, or uncontrollability of the local models is an
issue, a representation with a minimum number of rules should be chosen. More-
over, the obtained consequent models are not guaranteed to be stable, observable,
or controllable. Classic methods to analyze stability of a TS model require that the
linear local models are stable. Likewise, the methods for controller/observer design
require that the local models are controllable/observable. Depending on the nonlin-
ear system considered and the goal – analysis or design –, another representation or
an approximation of the nonlinear system may need to be chosen to have the desired
properties.

Once a TS representation or approximation of the nonlinear system (2.1) is avail-
able, the analysis is performed using Lyapunov’s direct method. At first, common
quadratic Lyapunov functions have been used and conditions have been developed
independently of the membership functions. In the last years, results in the discrete-
time case have been significantly improved by the use of nonquadratic Lyapunov
functions. With their use more evolved state-feedback controllers and observers were
developed, and the design conditions became less conservative.

Although results exist, in the literature, affine local models are rarely used for
controller design, since, using current control design methods, the affine terms have
to be compensated for in each rule, which is possible only in special cases. For
observer design, affine local models do not present a problem. However, to keep he
same type of models, in what follows, TS fuzzy models with linear consequents will
be used, i.e., instead of (2.2) we have the form

xxx(k +1) =
r

∑
i=1

hi(zzz(k))(Aixxx(k)+Biuuu(k))

yyy(k) =
r

∑
i=1

hi(zzz(k))(Cixxx(k))
(2.3)

In this case all the local models have the same equilibrium point, zero, and such,
Lyapunov stability analysis can naturally be employed. We also assume that the
membership functions – in case of controller design – do not depend on the control
input, in order to avoid having to solve implicit equations. For observer design, the
input is considered as a known (measured) variable, and therefore the membership
functions may depend on it.

2.2 Notations

For analysis as well as design the conditions are usually formulated as Linear Matrix
Inequalities (LMIs), for which efficient algorithms exist. We present a brief overview
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of their useful properties.
Let F = FT ∈ Rn×n be a symmetric matrix. In what follows, we use F > 0

and F < 0, respectively, for positive and negative definiteness, meaning that every
eigenvalue of F is strictly positive (negative). In general, whenever an expression is
written as F > 0, it is assumed that the expression is symmetric, i.e., F = FT > 0,
even if the explicit symmetry condition is omitted.

Let A, B∈Rn×n be two symmetric matrices. Then A > B is equivalent to A−B >
0.

A star (∗) in a matrix indicates a transposed quantity in the symmetric position.

For instance,
(

P (∗)
A P̃

)
< 0 is equivalent to

(
P AT

A P̃

)
< 0, AT P(∗) is equivalent

to AT PA and A +(∗) is equivalent to A + AT . 0 and I denote the zero and identity
matrices of appropriate dimensions.

In what follows we also use the notation Xz for the single sum Xz = ∑r
i=1 hi(zzz(k))Xi,

Xzz to denote the double sum Xzz = ∑r
i=1 ∑r

j=1 hi(zzz(k))h j(zzz(k))Xi j, X−1
z for the in-

verse of the sum X−1
z = (∑r

i=1 hi(zzz(k))Xi)
−1, etc., where h stands for the membership

functions and zzz(k) for the scheduling vector at sample k. We also use the notations
Xz+ = ∑r

i=1 hi(zzz(k+1))Xi, Xz− = ∑r
i=1 hi(zzz(k−1))Xi, and Xz+α = ∑r

i=1 hi(zzz(k+α))Xi,
α ∈N , when the scheduling variables are evaluated in other sampling instants.

For the general case of multiple sums we use the following notations.

Definition 2.1 (Multiple sum) We denote a multiple sum with nP terms and delays
evaluated at time k of the form

PGP
0
=

r

∑
i1=1

hi1(zzz(k +d1))
r

∑
i2=1

hi2(zzz(k +d2))
r

∑
inP=1

hinP
(zzz(k +dnP))Pi1i2...inP

where GP
0 is the multiset of delays GP

0 = {d1, d2, . . . , dnP}.

Definition 2.2 (Multiset of delays) GP
0 denotes the multiset containing the delays in

the multiple sum involving P at time k. GP
α denotes the multiset containing the delays

in the sum P at time k +α .

Note that we use ordered multisets, i.e., di+1 ≤ di, ∀i ∈ {1, 2, . . . , nP}.

Definition 2.3 (Cardinality) The cardinality of a multiset G, |G|, is defined as the
number of elements in G.

Definition 2.4 (Index set) The index set of a multiple sum PG is
IG = {i j|i j = 1, 2, . . . , r, j = 1, 2, . . . , |G|}, the set of all indices that appear in the
sum. Note that these indices are directly related to the delays in G. An element iii ∈ IG
is a multiindex.
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Definition 2.5 (Multiplicity) The multiplicity of an element x in a multiset G, 111G(x)
denotes the number of times this element appears in the multiset G.

Definition 2.6 (Union) The union of two multisets GA and GB is GC = GA∪GB such
that ∀x ∈ GC, 111GC(x) = max{111GA(x),111GB(x)}.

Definition 2.7 (Intersection) The intersection of two multisets GA and GB is GC =
GA∩GB such that ∀x ∈ GC, 111GC(x) = min{111GA(x),111GB(x)}.

Definition 2.8 (Sum) The sum of two multisets GA and GB is GC = GA⊕GB such
that ∀x ∈ GC, 111GC(x) = 111GA(x)+111GB(x).

Definition 2.9 (Projection of an index) The projection of the index iii ∈ IGA , to the
multiset of delays GB, priii

GB
is the part of the index that corresponds to the delays in

GA∩GB.

Example 2.1 Consider the multiple sum

r

∑
i1=1

hi1(zzz(k))
r

∑
i2=1

hi2(zzz(k))
r

∑
i3=1

hi3(zzz(k−1))
r

∑
i4=1

hi4(zzz(k−2))Pi1i2i3i4

GP
0 is given by GP

0 = {0, 0,−1,−2}, GP
α = {α, α, α − 1, α − 2}. The index set of

the multiple sum PGP
0

is IGP
0
= {i j|i j = 1, 2, . . . , r, j = 1, 2, 3, 4}.

The cardinality of GP
0 is |GP

0 |= 4. The multiplicity of the elements are 111GP
0
(0) =

2, 111GP
0
(−1) = 1, 111GP

0
(1) = 0.

Consider now two multisets GA = {0, 0,−1,−2}, and GB = {0, 0,−1,−1}. The
union of these two multisets is GA ∪GB = {0, 0,−1,−1,−2}, the intersection is
GA∩GB = {0, 0,−1}, and their sum is GA⊕GB = {0, 0, 0, 0 −1,−1,−1,−2}.

Note that the projection of a multiindex is in general not unique. For instance,
the projection of an element iii ∈ IGP

0
to GC = {0,−1} is either priii

GC
= {i1, i3|i1, i3 =

1, 2, . . . , r} or priii
GC

= {i2, i3|i2, i3 = 1, 2, . . . , r}. ¤

2.3 Useful properties and lemmas

In what follows, let us recall some useful properties that will be used further on.

Property 1 (Congruence) Given a matrix P = PT and a full column rank matrix Q it
holds that

P > 0 ⇒ QPQT > 0
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Property 2 (Schur complement) Consider a matrix M = MT =
(

M11 M12
MT

12 M22

)
, with

M11 and M22 being square matrices. Then

M < 0⇔
{

M11 < 0
M22−MT

12M−1
11 M12 < 0

⇔
{

M22 < 0
M11−M12M−1

22 MT
12 < 0

Property 3 (S-procedure) Consider matrices Fi = FT
i ∈ Rn×n, xxx ∈ Rn, such that

xxxT Fixxx≥ 0, ∀xxx, i = 1, . . . , p, and the quadratic inequality condition

xxxT F0xxx > 0 (2.4)

xxx 6= 0. A sufficient condition for (2.4) to hold is: there exist τi ≥ 0, i = 1, . . . , p, such
that F0−∑p

i=1 τiFi > 0.

Property 4 (Completion of squares) Given two matrices X and Y of proper size and
Q = QT > 0, the following inequality holds

XTY +Y T X ≤ XT QX +Y T Q−1Y

Property 5 Let A and B be matrices of appropriate dimensions and ranks, with B =
BT > 0. Then

(A−B)T B−1(A−B)≥ 0⇐⇒ AT B−1A≥ A+AT −B

Many control and estimation problems can be written as a double sum negativity
(or positivity) problem

r

∑
i=1

r

∑
j=1

hi(zzz(k))h j(zzz(k))Γi j(xxx) < 0, (2.5)

with the symmetric matrices Γi j(xxx) being affinely dependent on the unknown vari-
ables xxx∈Rnx and the membership functions hi(zzz(k)) having the convex sum property,
i.e., ∑r

i=1 hi(zzz(k)) = 1 and hi (zzz(k))≥ 0. Note that in what follows, our goal is to ob-
tain such double sums.

The aim is to find conditions on Γi j such that (2.5) holds, generally using only the
convex sum property for the nonlinear functions hi(zzz(k)). The trivial LMI solution of
the problem (2.5) is: Γi j(xxx) < 0, i, j = 1, . . . , r. These conditions can be relaxed by
considering that hi(zzz(k)) ≥ 0 and hi(zzz(k))h j(zzz(k)) = h j(zzz(k))hi(zzz(k)). For the ease
of notation, in what follows, the dependence of Γ on xxx is omitted. A basic sufficient
solution is (Wang et al., 1996)
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Lemma 2.10 (Wang et al., 1996) Equation (2.5) is satisfied if

Γii < 0

Γi j +Γ ji < 0
(2.6)

for i = 1, 2, . . . , r, j = i+1, i+2, . . . , r.

A refinement of the conditions (2.6) is:

Lemma 2.11 (Tuan et al., 2001) Equation (2.5) is satisfied if

Γii < 0
2

r−1
Γii +Γi j +Γ ji < 0

(2.7)

for i = 1, 2, . . . , r, j = 1, 2, . . . , r, i 6= j.

Adding auxiliary variables can also be useful in order to reduce the conservatism
of the conditions.

Lemma 2.12 (Liu and Zhang, 2003) Condition (2.5) is satisfied if there exist matri-
ces Qii > 0, i = 1, 2, . . . , r, and Qi j = QT

ji, i = 1, 2, . . . , r, j = i+1, i+2, . . . , r such
that

Γii +Qii < 0

Γi j +Γ ji +Qi j +Q ji < 0


Q11 Q12 . . . Q1r

Q21 Q22 . . . Q2r
...

. . .
...

Qr1 Qr2 . . . Qrr


 > 0

(2.8)

for i = 1, 2, . . . , r, j = i+1, i+2, . . . , r.

The conditions of Lemmas 2.10, 2.11, and 2.12 are only sufficient. Nevertheless,
some relaxations exist that become asymptotically necessary when the number of
terms in the summations is extended to infinity; Sala and Ariño (2007) proposed
conditions that are based on Polya’s theorems, whereas Kruszewski et al. (2009)
proposed conditions that are based on triangulation. Other works use more properties
of the nonlinear functions hi(zzz), i = 1, 2, . . . , r, (Sala and Ariño, 2007; Bernal et al.,
2009). The main drawback of these results is that the complexity of the LMI problems
increases, and they quickly become intractable for the actual LMI solvers.

Many simple and relaxed conditions can be obtained using Finsler’s lemma. In
fact, most state-of-the-art results in the discrete-time case have been obtained using
this lemma. We introduce it here as it will be frequently used in what follows.



16 CHAPTER 2. BACKGROUND

Lemma 2.13 (Skelton et al., 1998) Consider a vector xxx ∈Rnx and two matrices Q =
QT ∈ Rnx×nx and R ∈ Rm×nx such that rank(R) < nx. The two following expressions
are equivalent:

1. xxxT Qxxx < 0, xxx ∈ {xxx ∈ Rnx ,xxx 6= 0,Rxxx = 0}
2. ∃M ∈ Rm×nx such that Q+MR+RT MT < 0

In what follows, we present some basic results on stability analysis of discrete-
time Takagi-Sugeno models of the form

xxx(k +1) =
r

∑
i=1

hi(zzzk)Aixxx(k)

= Azxxx(k)
(2.9)

2.4 Stability analysis – the basics

In order to analyze the stability of a TS model, the direct Lyapunov approach has
been used. Stability conditions have been derived using quadratic Lyapunov func-
tions (Tanaka et al., 1998; Tanaka and Wang, 2001; Sala et al., 2005), piecewise
continuous Lyapunov functions (Johansson et al., 1999; Feng, 2004), and more re-
cently, to reduce the conservativeness of the conditions, nonquadratic Lyapunov func-
tions (Guerra and Vermeiren, 2004; Kruszewski et al., 2008; Mozelli et al., 2009).
The aim is generally to develop conditions in the form of LMIs.

The Lyapunov function1 classically used is the quadratic one,

V (xxx(k)) = xxxT (k)Pxxx(k) (2.10)

with P = PT > 0.

Since this Lyapunov function is quadratic in xxx(k), we speak of “quadratic sta-
bility”. Note that when a system is quadratically stable it implies that it is stable.
However, the reverse is not necessarily true. Therefore, conditions obtained using
the Lyapunov function (2.10) are only sufficient, i.e., if they fail, nothing can be
directly said about stability or instability of the TS model.

The TS model (2.9) is quadratically stable if the Lyapunov function (2.10) de-
creases and tends to zero when k → ∞ for all trajectories xxxk.

A very first result has been expressed as:

Theorem 2.14 (Tanaka and Wang, 2001) The unforced model

xxx(k +1) = Azxxx(k)

1In the sequel, whenever it is evident, the explicit dependence of the Lyapunov function on the state
variables is omitted.
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is globally asymptotically stable if there exist a matrix P = PT such that the following
LMI problem is feasible

AT
i PAi−P < 0 (2.11)

for i = 1, 2, . . . , r.

The above condition, using the Schur complement, is equivalent to
(

P AT
i P

PAi P

)
> 0 (2.12)

which is its most frequently encountered form.
Quadratic stability of discrete-time TS systems ensures exponential decay of the

state values. To verify whether this decay-rate is more than a certain value or indeed
to find an upper bound on the decay rate, one can use the following result (Tanaka
and Wang, 2001):

Theorem 2.15 (Tanaka and Wang, 2001) The decay-rate of the unforced model
xxx(k +1) = Azxxx(k) is at least β ∈ [0, 1] if the following LMI problem is feasible

(
βP AT

i P
PAi P

)
> 0 (2.13)

for i = 1, 2, . . . , r.

Finding the maximum decay rate is a GEVP problem, which can be solved itera-
tively.

Since most results in this thesis are based on using Lemma 2.13, here we show
how a similar result can be obtained. Consider the Lyapunov function V = xxx(k)T Xxxx(k).
The change in the Lyapunov functions along the trajectories of the system is:

∆V = xxx(k +1)T Xxxx(k +1)− xxx(k)T Xxxx(k)

=
(

xxx(k)
xxx(k +1)

)T (−X 0
0 X

)(
xxx(k)
xxx(k)

)

At the same time, the dynamics of the discrete-time system can be written as

(
Az −I

)(
xxx(k)

xxx(k +1)

)
= 0

Using Lemma 2.13 and choosing M =
(

0
H

)
, with H being a free matrix, one

obtains the conditions:
(−X 0

0 X

)
+

(
0
H

)(
Az −I

)
+(∗) < 0
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leading to (−X (∗)
HAz X−H−HT

)
< 0

A sufficient LMI condition can be formulated as
(−X (∗)

HAi X−H−HT

)
< 0 i = 1, 2, . . . , r

This result is less conservative than that in Theorem 2.14, due to the free matrix
H. To see this, lets us chose H = HT = X = P. With this choice, we have

(−P (∗)
PAz −P

)
< 0

for which the LMIs are those in (2.12).
The conditions above are only sufficient conditions, due to using only the knowl-

edge of the convex sum property for hi(zzz) and reducing the stability issue to quadratic
stability. Indeed, a system may be stable but not quadratically stable, see e.g., (Jo-
hansson and Rantzer, 1998).

Introducing some “knowledge” in the Lyapunov function can relax the stability
conditions. Since, in a sense, a TS model induces a state space partition according
to the scheduling variables, current results rely on introducing this partition into the
Lyapunov function. This can be done in two ways.

The first way is the use of piecewise quadratic Lyapunov functions (Johansson
and Rantzer, 1998; Johansson et al., 1999; Feng, 2003, 2006). The state space is
partitioned according to the activation of the linear models, allowing the Lyapunov
function to change from one region to another, for instance

V (xxx,zzz) = xxxT P(zzz)xxx P(zzz) = Pi > 0 if zzz ∈ Si

where Si are given sets such that
⋃

i Si covers the state space. For example, “natu-
ral” regions for TS models are: Si = {zzz|hi(zzz) ≥ h j(zzz), j = 1, 2, . . . , r, j 6= i}, i =
1, 2, . . . , r.

The above partition is natural for those TS models that do not have all their linear
models activated at once. Unfortunately, this assumption does not hold for TS mod-
els built by using the sector nonlinearity approach, but it holds e.g., for TS models
obtained by dynamic linearization or substitution.

The second way is to use a fuzzy Lyapunov function (Blanco et al., 2001; Tanaka
et al., 2003). The functions

V (xxx,zzz) = xxxT
r

∑
i=1

hi(zzz)Pixxx

= xxxT Pzxxx

(2.14)
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or

V (xxx,zzz) = xxxT

(
r

∑
i=1

hi(zzz)Pi

)−1

xxx

= xxxT P−1
z xxx

(2.15)

with Pi > 0, i = 1, 2, . . . , r. are usually considered, with Pi > 0, i = 1, 2, . . . , r, thus
introducing the nonlinear membership functions hi(zzz) into the Lyapunov function.

While in the continuous-time case the main challenge is handling the derivative of
the membership functions, in the discrete-time case the derivatives are conveniently
avoided. To see this, consider the discrete-time TS model

xxx(k +1) = Azxxx(k) (2.16)

and the nonquadratic Lyapunov function

V = xxx(k)T Pzxxx(k) (2.17)

The difference in the Lyapunov function is

∆V = xxx(k +1)T Pz+1xxx(k +1)− xxx(k)T Pzxxx(k)

=
(

xxx(k)
xxx(k +1)

)T (−Pz 0
0 Pz+1

)(
xxx(k)

xxx(k +1)

)

At the same time, the dynamics of the system can be written as

(
Az −I

)(
xxx(k)

xxx(k +1)

)
= 0

Using Lemma 2.13, similarly to the quadratic case, and choosing M =
(

0
Hz

)
we

obtain (−Pz 0
0 Pz+1

)
+

(
0

Hz

)(
Az −I

)
+(∗) < 0

(−Pz (∗)
HzAz −Hz−HT

z +Pz+1

)
< 0

This result has been formulated as (Guerra and Vermeiren, 2004):

Theorem 2.16 The TS model (2.16) is asymptotically stable if there exist Pi = PT
i >

0, Hi so that (−Pz (∗)
HzAz −Hz−HT

z +Pz+1

)
< 0

Conveniently, sufficient LMI conditions can be formulated using e.g., Lemma 2.11
as follows:
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Corollary 2.17 The TS model (2.16) is asymptotically stable if there exist Pi = PT
i >

0, Hi so that
2

r−1
Γk

i, j +Γk
i, j +Γk

j,i < 0

i, j,k = 1, 2, . . . , r, where

Γk
i, j =

(−Pi (∗)
HiA j −Hi−HT

i +Pk

)

Naturally, several other relaxations, such as those presented in (Wang and Mendel,
1992), (Wang et al., 1996), (Sala and Ariño, 2007) can also be used.

Another possibility is to use the inverse of the convex sum in the Lyapunov func-
tion, i.e., (2.15). In this case the difference in the Lyapunov function is

∆V = xxx(k +1)T P−1
z+1xxx(k +1)− xxx(k)T P−1

z xxx(k)

=
(

xxx(k)
xxx(k +1)

)T (−P−1
z 0

0 P−1
z+1

)(
xxx(k)

xxx(k +1)

)

The dynamics of the system are

(
Az −I

)(
xxx(k)

xxx(k +1)

)
= 0

Similarly to the previous case, using Lemma 2.13, and choosing M =
(

0
P−1

z+1

)
we

obtain (−P−1
z 0

0 P−1
z+1

)
+

(
0

P−1
z+1

)(
Az −I

)
+(∗) < 0

(−P−1
z (∗)

P−1
z+1Az −P−1

z+1

)
< 0

Congruence with
(

HT
z 0

0 Pz+1

)
leads to

(−HT
z P−1

z Hz (∗)
AzHz −Pz+1

)
< 0

which, by applying Property 5, yields
(−HT

z +Pz−Hz (∗)
AzHz −Pz+1

)
< 0

for which again sufficient LMI conditions can be formulated and relaxations can be
used.

This result can be formulated as



2.4. STABILITY ANALYSIS – THE BASICS 21

Theorem 2.18 The TS model (2.16) is asymptotically stable if there exist Pi = PT
i >

0, Hi so that (−HT
z +Pz−Hz (∗)

AzHz −Pz+1

)
< 0

A different result, which can actually be applied to any Lyapunov function in
the discrete-time case, relies on considering the variation of the Lyapunov function
during several samples (Kruszewski et al., 2008). Up to this point, we imposed that
the Lyapunov function decreases every sample. However, for a stable system, the
states will eventually converge to zero, even though the Lyapunov function does not
decrease every time instant, but only after several samples. This is why this technique
is called α-sample variation.

Consider again the Lyapunov function (2.17). In this case, we analyze the varia-
tion of the function after α samples, which can be written as

∆αV = xxx(k +α)T Pz+αxxx(k +α)− xxx(k)T Pzxxx(k)

=




xxx(k)
...

xxx(k +α)




T




−Pz 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0
... Pz+α







xxx(k)
...

xxx(k +α)




This result has been formulated as (Kruszewski et al., 2008):

Theorem 2.19 The TS model (2.16) is asymptotically stable if there exist Pi = PT
i >

0, Hi so that



−Pz (∗) (∗) . . . (∗)
HzAz −Hz− (∗) (∗) . . . (∗)

...
...

... . . .
...

0 0 0 . . . −Hz+α−1− (∗)+Pz+α


 < 0

Similarly to the previous results, sufficient LMI conditions can be formulated and
all the existing relaxations can be used.

It has to be noted, that to simply prove stability, in general, the membership
functions and their properties are not needed or used. Moreover, relaxations such
as Lemma 2.11 or 2.12 can easily used, or, due to the double sum, even Polya’s
theorem (Sala and Ariño, 2007) can be applied, obtaining asymptotically necessary
and sufficient conditions.

However, since the TS model is usually defined on a compact set, the region in
which stability holds may be very restricted. Therefore, to also obtain the stabil-
ity region, the properties of the scheduling variables are used. For instance, in the
continuous case, given a bound on the derivatives of the membership functions, the
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result in (Mozelli et al., 2009) or if the TS model has been obtained by using the
sector nonlinearity approach, the results in (Bernal and Guerra, 2010) can be directly
employed. In the discrete-time case, we have developed such results and will present
them in Part III.

In the last years, next to using the single-sum Lyapunov functions shown above,
double- and n-sum Lyapunov functions have also been introduced, together with de-
layed Lyapunov function. While they can also be used to determine stability of the
system, the interest in using them will be shown for stabilization in the next chapter.



Chapter 3

Nonquadratic stabilization

3.1 Introduction

Non-quadratic Lyapunov functions have significantly improved the design conditions
in the discrete-time case (Guerra and Vermeiren, 2004; Ding et al., 2006; Dong and
Yang, 2009; Lee et al., 2011). The solutions obtained by non-quadratic Lyapunov
functions include and extend the set of solutions obtained using the quadratic frame-
work. One-sum Lyapunov functions have quickly been extended to double-sum Lya-
punov functions in (Ding et al., 2006) and later to polynomial Lyapunov functions
in (Sala and Ariño, 2007; Ding, 2010; Lee et al., 2010).

In the nonquadratic framework, delayed controllers and observers have been pro-
posed in (Kerkeni et al., 2010). The observer design method has been generalized
further on in (Guerra et al., 2012), but the controller design had the shortcoming of
an increased number of LMIs.

In what follows, we present a general framework for using delayed non-quadratic
Lyapunov functions for controller design, and new possibilities thanks to the delayed
aspect of the Lyapunov function. These allow the use of a completely new family of
controllers based on past states. Moreover, the results are extended for robust control,
H∞ control and to α-sample variation.

The material in this chapter is based on the following publications:

(P1) Zs. Lendek, T. M. Guerra, J. Lauber, Controller design for TS models using
non-quadratic Lyapunov functions. IEEE Transactions on Cybernetics, vol.
45, no. 3, pages 453-464, 2015.

(P2) Zs. Lendek, T.M. Guerra, J. Lauber, Construction of extended Lyapunov func-
tions and control laws for discrete-time TS systems. Proceedings of the 2012
IEEE World Congress on Computational Intelligence, IEEE International Con-
ference on Fuzzy Systems, pages 286-291, Brisbane, Australia, June 2012.

23
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3.2 A motivating example

To show the interest in using delayed states in the Lyapunov function and in the
controller gains, we first present a simple example.

Thus, consider the TS model

xxx(k +1) =
r

∑
i=1

hi(zzz(k))(Aixxx(k)+Biuuu(k))

= Azxxx(k)+Bzuuu(k)
(3.1)

and the controller

uuu(k) =−
r

∑
i=1

r

∑
j=1

hi(zzz(k))h j(zzz(k−1))Fi j·

·
(

r

∑
l=1

r

∑
m=1

hl(zzz(k))hm(zzz(k−1))Hlm

)−1

xxx(k)

=−Fzz−H−1
zz−xxx(k)

(3.2)

i.e., the controller gains F and H depend not only on the current state, but also the
past one.

The closed-loop dynamics are:

xxx(k +1) =
(
Az−BzFzz−H−1

zz−
)

xxx(k) (3.3)

Using the Lyapunov function V = xxxT (k)P−1
z− xxx(k), we have the difference

∆V1 =V (k +1)−V (k) =

=xxx(k +1)T P−1
z xxx(k +1)− xxx(k)T P−1

z− xxx(k)

=
(

xxx(k)
xxx(k +1)

)T (−P−1
z− 0

0 P−1
z

)(
xxx(k)

xxx(k +1)

)

The closed-loop system dynamic is

(
Az−BzFzz−H−1

zz− −I
)(

xxx(k)
xxx(k +1)

)
= 0 (3.4)

Using Lemma 2.13 with (3.4), ∆V1 < 0, if there exist M ∈ R2nx×nx so that
(−P−1

z− 0
0 P−1

z

)
+M

(
Az−BzFzz−H−1

zz− −I
)
+(∗) < 0

Choosing M =
(

0
P−1

z

)
and congruence with

(
Hzz− 0

0 Pz

)
leads to

(−HT
zz−P−1

z− Hzz− (∗)
AzHzz−−BzFzz− −Pz

)
< 0
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Using Property 5, we obtain
(−Hzz−−HT

zz−+Pz− (∗)
AzHzz−−BzFzz− −Pz

)
< 0 (3.5)

This result can be formulated as

Theorem 3.1 The closed-loop dynamics (3.3) are asymptotically stable if there exist
Pz = PT

z , Fzz−, and Hzz−, so that (3.5) holds.

Relaxed LMI conditions can easily be formulated using Lemmas 2.10 or 2.11, as
follows.

Corollary 3.2 The closed-loop system (3.3) is asymptotically stable, if there exist
Pi = PT

i , Fi j, and Hi j, i, j = 1, 2, . . . , r so that

Γi jk +Γ jik < 0

for i, j,k = 1, 2, . . . , r, i≤ j, or

Γiik < 0
2

r−1
Γiik +Γi jk +Γ jik < 0

for i, j,k = 1, 2, . . . , r, where

Γi jk =
(−H jk−HT

jk +Pk (∗)
AiH jk−BiFjk −Pi

)
< 0

The proof of the above corollary is straightforward.
Note that the conditions above are not equivalent to those in the literature, e.g.,

those in (Guerra and Vermeiren, 2004), which involve the negative definiteness of
sums of the form

( −Pz (∗)
AzHz−BzFz −Hz+−HT

z+ +Pz+

)
< 0 (3.6)

This will be shown in the following example.
Remark: Both using Pz− in the Lyapunov function and the controller gain Fzz−Hzz−

and Pz in the Lyapunov function and the controller gain FzHz, as in (3.6), respectively,
result in r3 LMIs.

Example 3.1 Consider the two-rule TS model having the local matrices

A1 =
(

2 0.04a+6.9
−1 0.03b−2.9

)
B1 =

(
0.03b−2.9

1

)

A2 =
(

1 0.04a+6.9
−1 0.03b−2.9

)
B2 =

(
1
5

)



26 CHAPTER 3. NONQUADRATIC STABILIZATION

where a and b are real-valued parameters, a,b∈ [−4,4]. Using the conditions in (Guerra
and Vermeiren, 2004), the values of a and b for which a solution can be found are
presented in Figure 3.1(a). By using the conditions of Theorem 3.1, we obtain so-
lutions for the values presented in Figure 3.1(b). In both cases, the number of sums
involved is 3. ¤

−5 0 5
−5

0

5

a

b

(a) Results using the conditions in Guerra and
Vermeiren (2004).

−5 0 5
−5

0

5

a

b

(b) Results using Theorem 3.1.

Figure 3.1: Feasible solutions for Example 3.1.

Note that an equivalence between the methods above would correspond to a con-
troller gain Fzz+Hzz+, which cannot be used. Therefore, considering Pz− instead of Pz

allows introducing more degrees of freedom in the control law.
We will revisit this example later on. The question remains, that if more sums

are used in P, F , and H how and which sums should be used. The result will be
generalized with extra delayed states z− 1, z− 2, etc., allowing extended control
using past states. In order to do the generalization, we use the notation introduced in
Section 2.2.

3.3 Two controller design methods

In what follows, the discrete-time TS model considered for controller design is of the
form

xxx(k +1) = Azxxx(k)+Bzuuu(k) (3.7)

where Az denotes the convex sum Az = ∑r
i=1 hi(zzz(k))Ai, Ai and Bi, i = 1, 2, . . . , r are

the local matrices, r denotes the number of rules, k is the time instant, xxx ∈ Rnx is
the state vector, uuu ∈ Rnu is the control input, zzz ∈ Rnz is the scheduling vector. It is
assumed that the scheduling variables zzz(k) are available at the time instant k.

With the notations defined in Section 2.2, the system (3.7) can be written as

xxx(k +1) =AGA
0
xxx(k)+BGB

0
uuu(k) (3.8)
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with GA
0 = GB

0 = {0}. Although we restrict ourselves to the classical TS system of
the form (3.7), for the ease of notation we use the notation (3.8).

The controller used is of the form

uuu(k) =−FGF
0
H−1

GH
0

xxx(k) (3.9)

with FGF
0

andHGH
0

being multiple sums with delays given by GF
0 , |GF

0 |= nF , and GH
0 ,

|GH
0 |= nH , respectively. Note that GF

0 and GH
0 may not contain positive delays, since

a positive delay refers to future scheduling variables, that are not available. At this
point, the possible delays, i.e., the multisets GF

0 and GH
0 are not necessarily deter-

mined. Possible delays will be discussed in Section 3.3.2. Note that this controller is
a generalization of those used in (Kerkeni et al., 2009; Sala and Ariño, 2007; Guerra
and Vermeiren, 2004).

Using the controller (3.9) for the TS system (3.8), the closed-loop system can be
expressed as

xxx(k +1) =
(
AGA

0
−BGB

0
FGF

0
H−1

GH
0

)
xxx(k) (3.10)

3.3.1 Design conditions

Conditions have been developed using two different Lyapunov functions:

• Case 1: V = xxx(k)TH−T
GH

0
PGP

0
H−1

GH
0

xxx(k), with Piii = PT
iii > 0, for iii ∈ IGP

0
, |GP

0 |= nP,
and HGH

0
being the multisum used in the controller, and

• Case 2: V = xxx(k)TP−1
GP

0
xxx(k), with Piii = PT

iii > 0, for iii ∈ IGP
0
, |GP

0 |= nP.

In what follows, whenever referring to Case 1 and Case 2, we refer to the two
Lyapunov functions above.

For Case 1, the following result can be stated:

Theorem 3.3 The closed-loop system (3.10) is asymptotically stable, if there exist
PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, and HiiiHj

, iiiHj = priii
GH

j
, iii ∈ IGV , j = 0, 1, and FiiiF0

, iiiF0 = priii
GF

0
, where

GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕GB

0 )∪ (GH
0 ⊕GA

0 )∪GH
1 so that

(
−PGP

0
(∗)

AGA
0
HGH

0
−BGB

0
FGF

0
−HGH

1
−HT

GH
1
+PGP

1

)
< 0 (3.11)

Remark: GV above is simply the multiset containing all the delays in the multiple
sum in (3.11).
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Proof: Consider the Lyapunov function V = xxx(k)TH−T
GH

0
PGP

0
H−1

GH
0

xxx(k), with Piii =

PT
iii > 0, for iii ∈ IGP

0
, |GP

0 |= nP. The difference is

∆V1 =V (k +1)−V (k) =

=xxx(k +1)TH−T
GH

1
PGP

1
H−1

GH
1

xxx(k +1)− xxx(k)TH−T
GH

0
PGP

0
H−1

GH
0

xxx(k)

=
(

xxx(k)
xxx(k +1)

)T
(−H−T

GH
0
PGP

0
H−1

GH
0

0

0 H−T
GH

1
PGP

1
H−1

GH
1

)(
xxx(k)

xxx(k +1)

)

The closed-loop system dynamics are

(
AGA

0
−BGB

0
FGF

0
H−1

GH
0

−I
)(

xxx(k)
xxx(k +1)

)
= 0 (3.12)

Using Lemma 2.13, ∆V1 < 0, if there exist M ∈ R2nx×nx so that
(−H−T

GH
0
PGP

0
H−1

GH
0

0

0 H−T
GH

1
PGP

1
H−1

GH
1

)
+M

(
AGA

0
−BGB

0
FGF

0
H−1

GH
0

−I
)

+(∗) < 0

In order to obtain a problem with LMI constraints encompassing the classical cases,
a choice is:

M =

(
0
H−T

GH
1

)

which leads to
( −H−T

GH
0
PGP

0
H−1

GH
0

(∗)
H−T

GH
1
AGA

0
−H−T

GH
1
BGB

0
FGF

0
H−1

GH
0

−H−T
GH

1
−H−1

GH
1
+H−T

GH
1
PGP

1
H−1

GH
1

)
< 0 (3.13)

Applying to (3.13) Property 1 with the matrix
(
HT

GH
0

0

0 HT
GH

1

)

gives directly the conditions (3.11). ¥
Case 2 leads to the conditions:

Theorem 3.4 The closed-loop system (3.10) is asymptotically stable, if there exist
PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, j = 0, 1, FiiiF0

, iiiF0 = priii
GF

0
, and HiiiH0

, iiiH0 = priii
GH

0
, iii ∈ IGV , where

GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕GB

0 )∪ (GH
0 ⊕GA

0 ) so that
(
−HGH

0
−HT

GH
0
+PGP

0
(∗)

AGA
0
HGH

0
−BGB

0
FGF

0
−PGP

1

)
< 0 (3.14)



3.3. TWO CONTROLLER DESIGN METHODS 29

Proof: Consider the Lyapunov function V = xxx(k)TP−1
GP

0
xxx(k), with Piii = PT

iii > 0, for

iii ∈ IGP
0
, |GP

0 |= nP. The difference is

∆V1 =
(

xxx(k)
xxx(k +1)

)T
(−P−1

GP
0

0

0 P−1
GP

1

)(
xxx(k)

xxx(k +1)

)

Using Lemma 2.13 with (3.12), ∆V1 < 0, if there exist M ∈ R2nx×nx so that
(−P−1

GP
0

0

0 P−1
GP

1

)
+M

(
AGA

0
−BGB

0
FGF

0
H−1

GH
0

−I
)

+(∗) < 0

Choosing M =

(
0
P−1

GP
1

)
and congruence with

(
HGH

0
0

0 PGP
1

)
leads to

(
−HT

GH
0
P−1

GP
0
HGH

0
(∗)

AGA
0
HGH

0
−BGB

0
FGF

0
−PGP

1

)
< 0

Using Property 5, we obtain directly (3.14). ¥

3.3.2 Examples and discussion

First, we illustrate the use of the conditions (3.11) and (3.14), respectively on the
following example. Consider a two-rule fuzzy system

xxx(k +1) =
2

∑
i=1

hi(zzz(k))(Aixxx(k)+Biuuu(k))

= AGA
0
xxx(k)+BGB

0
uuu(k)

with GA
0 = GB

0 = {0} for which a controller has to be designed and let GH
0 = {0,−1},

GF
0 = {0,−1}, GP

0 = {−1,−1}, i.e.,

P{−1,−1} =
2

∑
i=1

2

∑
j=1

hi(zzz(k−1))h j(zzz(k−1))Pi j

H{0,−1} =
2

∑
i=1

2

∑
j=1

hi(zzz(k))h j(zzz(k−1))Hi j

F{0,−1} =
2

∑
i=1

2

∑
j=1

hi(zzz(k))h j(zzz(k−1))Fi j

Then, the conditions (3.11) of Theorem 3.3 correspond to there exist Pi j, Fi j, Hi j,
i, j = 1, 2 so that

( −P{−1,−1} (∗)
A{0}H{0,−1}−B{0}F{0,−1} −H{0,1}−HT

{0,1}+P{0,0}

)
< 0
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or

2

∑
i1=1

2

∑
i2=1

2

∑
i3=1

2

∑
i4=1

2

∑
i5=1

hi1(zzz(k))hi2(zzz(k))hi3(zzz(k−1))hi4(zzz(k−1))hi5(zzz(k +1))·

·
( −Pi3i4 (∗)

Ai1Hi2i3 −Bi1Fi2i3 −Hi1i5 −HT
i1i5 +Pi1i2

)
< 0

while the conditions (3.14) of Theorem 3.4 correspond to there exist Pi j, Fi j, Hi j,
i, j = 1, 2 so that

(
P{−1,−1}−H{0,−1}−HT

{0,−1} (∗)
A{0}H{0,−1}−B{0}F{0,−1} −P{0,0}

)
< 0

or
2

∑
i1=1

2

∑
i2=1

2

∑
i3=1

2

∑
i4=1

hi1(zzz(k))hi2(zzz(k))hi3(zzz(k−1))hi4(zzz(k−1))·

·
(−Hi2i3 −HT

i2i3 +Pi3i4 (∗)
Ai1Hi2i3 −Bi1Fi2i3 −Pi1i2

)
< 0

Assuming classical TS models, the maximum number of sums in (3.11) (Case
1) is given by |GV | ≤ 2nP + nF + 2nH + 1, which corresponds to the maximum of
|GP

0 ∪GP
1 ∪(GF

0 ⊕GB
0 )∪(GH

0 ⊕GA
0 )∪GH

1 | or pairwise non-overlapping sets of indices
GP

0 , GP
1 , GF

0 , GH
0 , GH

1 , and {0}. For Case 2, the number of sums in (3.14) is given
by |GV | ≤ 2nP + nF + nH + 1, which in this case corresponds to the maximum of
|GP

0 ∪GP
1 ∪ (GF

0 ⊕GB
0 )∪ (GH

0 ⊕GA
0 )|. Note that when |GV | = 2nP + nF + 2nH + 1

(Case 1) or |GV |= 2nP +nF +nH +1 (Case 2), the corresponding conditions become
equivalent to using a common quadratic Lyapunov function and a PDC controller, as
the LMIs have to be solved for each possible index. However, the maximum number
of sums indicates that for fixed GH

0 , GF
0 , and GP

0 , in general the conditions of Case 2
will lead to a smaller number of sums and consequently the number of LMIs to be
solved.

In general, depending on the exact sets of indices used, GP
0 , GF

0 , and GH
0 , relax-

ations such as those presented by Wang et al. (1996); Tanaka et al. (1998); Tuan et al.
(2001); Sala and Ariño (2007) for the LMIs in (3.11) and (3.14) can be used.

In order to further reduce the number of LMIs and the conservativeness of the
conditions, the delays, notably the multisets GP

0 , GH
0 , and GF

0 should be chosen such
that relaxations can be used. Since GA

0 = GB
0 = {0}, both GH

0 , and GF
0 should contain

{0}. It can also be seen that due to the terms AGA
0
HGH

0
and BGB

0
FGF

0
, which appear in

both cases, one can chose GF
0 = GH

0 .
To illustrate the choice of the delays, consider now the simplest case, when |GP

0 |=
1, i.e., only one sum is used in P.
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For Case 1, we have the inequality
(

−PGP
0

(∗)
A{0}H{0}−B{0}F{0} −H{1}−HT

{1}+PGP
1

)
< 0

which, independent of |GP
0 | already contains 3 sums. By adding another index in

GH
0 , the number of sums increases. Moreover, in order to keep this number of sums,

|GP
0 | has to be chosen as |GP

0 | = {0}. For an arbitrary cardinality of the multisets
GP

0 and GH
0 , this generalizes to GP

0 = {0, 0, . . . , 0} and GF
0 = GH

0 = {0, 0, . . . , 0}.
Moreover, if |GP

0 | = |GH
0 | = nP, this choice reduces the number of sums in (3.11) to

2nP + 1. This can also be seen from |GV |, which for this case is reduced to GV =
{0, 0, 0, . . . , 0︸ ︷︷ ︸

nP

, 1, 1, . . . , 1︸ ︷︷ ︸
nP

}.

For Case 2, we have the inequality
(
−H{0}−HT

{0}+PGP
0

(∗)
A{0}H{0}−B{0}F{0} −PGP

1

)
< 0

which contains two sums. In order to have 3 sums (same as in Case 1), GP
0 can be

chosen either {0} or {−1}, which would lead to
(−H{0}−HT

{0}+P{0} (∗)
A{0}H{0}−B{0}F{0} −P{1}

)
< 0

for GP
0 = {0} or (−H{0}−HT

{0}+P{−1} (∗)
A{0}H{0}−B{0}F{0} −P{0}

)
< 0

for GP
0 = {−1}, respectively. It can be easily seen that in the second case, i.e., when

GP
0 = {−1}, we can also add1 another dimension to H and F , that provides more

freedom, but without altering the number of sums in the condition. This choice will
lead to the conditions

(−H{0,−1}−HT
{0,−1}+P{−1} (∗)

A{0}H{0,−1}−B{0}F{0,−1} −P{0}

)
< 0

For an arbitrary cardinality of the multisets GP
0 and GH

0 , this choice generalizes to
GP

0 = {−1,−1, . . . ,−1} and GF
0 = GH

0 = {0, 0, . . . , 0,−1, . . . ,−1}. Moreover, if
|GP

0 | = |GH
0 | = 2nP, this choice reduces the number of sums in (3.11) to 2nP + 1.

This can also be seen from |GV |, which, similarly to Case 1, is reduced to GV =
{0, 0, 0, . . . , 0︸ ︷︷ ︸

nP

,−1,−1, . . . ,−1︸ ︷︷ ︸
nP

}.

1Note that H{0,1} cannot be used, as the premise variables are not known in advance.
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Theorem 3.3 is a generalization of existing results and in a sense, a way to write
them in a convenient general form. Theorem 3.4, by using delayed control, represents
a new result that allows bringing new control laws that have not been possible with
the previous conditions. To show this, let us look to several results in the literature.

The results of Guerra and Vermeiren (2004) are recovered by using the Lyapunov
function from Case 2 with GP

0 = {0}, GH
0 = GF

0 = {0} and choosing HGH = PGP .
Theorem 3 of Ding et al. (2006) is obtained from Case 2, by choosing GP

0 = {0, 0},
and GH

0 = GF
0 = {0}. The controller design of Dong and Yang (2009) can be recov-

ered from Theorem 3.3. The results of Kerkeni et al. (2009) (without the delay) are
again a special case of Theorem 3.3. Theorem 1 of Lee et al. (2010) is Theorem 3.5
for the choice GP

0 = {0, . . . , 0}, GH
0 = GF

0 = {0, . . . , 0}. Theorem 1 of Kerkeni et al.
(2010) is obtained from Theorem 3.3 of this thesis by choosing GP

0 = {−1}, and
GH

0 = GF
0 = {0,−1}. The results of Lee et al. (2011) (without the relaxations used

on the sums) correspond to Theorem 3.3 applied for the special case of consecutive
delays GP

0 = {−N +1,−N, . . . , 0, 1}, GH
0 = GF

0 = {−N f +1,−N f , . . . , 0}.
Note that the conditions of Theorems 3.3 and 3.4 are not equivalent, and although

they generalize several conditions from the literature, they do not include each other.
This will be illustrated on two examples. In order to obtain a fair comparison, the
delays used are selected as GF

0 = GH
0 = GP

0 = {0} for Case 1, and GF
0 = GH

0 = {0,−1}
and GP

0 = {−1} for Case 2. This selection results in 3 sums both for (3.11) and (3.14).
On the sums, the relaxation of Wang et al. (1996) is used, and for solving the LMIs,
the SeDuMi solver within the Yalmip (Löfberg, 2004) toolbox has been used.

Example 3.2 Consider the two-rule fuzzy system

xxx(k +1) =
2

∑
i=1

hi(zzz(k))(Aixxx(k)+Biuuu(k))

with

A1 =
(−0.62 1.26

1.44 −0.35

)
A2 =

(−1.04 −0.26
−0.66 0.45

)
B1 =

(−0.73
1.5

)
B1 =

(
1
0

)

For this system, the conditions of Theorem 3.4 are unfeasible, while using Theo-
rem 3.3 we obtain:

P1 =
(

66.7315 −16.9055
−16.9055 84.9836

)
P2 =

(
63.0577 68.0822
68.0822 287.5234

)

H1 =
(

73.2442 53.3137
−31.0714 96.1056

)
H2 =

(
78.2196 27.3305

133.7439 278.5545

)

F1 =
(
54.7228 −20.9555

)
F2 =

(−69.5334 −148.9060
)

¤
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Example 3.3 On the other hand, consider the two-rule fuzzy system

xxx(k +1) =
2

∑
i=1

hi(zzz(k))(Aixxx(k)+Biuuu(k))

with

A1 =
(

1.5 2.7
−1.1 1.8

)
A2 =

(−0.4 −0.8
0.5 −0.8

)
B1 =

(−0.55
0.9

)
B1 =

(
1
0

)

For this system, the conditions of Theorem 3.3 are unfeasible, while using Theo-
rem 3.4 we obtain:

P1 =
(

1.9096 1.2666
1.2666 1.0716

)
P2 =

(
1.0724 0.4041
0.4041 0.3692

)

H11 =
(

1.4702 1.0045
1.0189 0.9424

)
H12 =

(
1.8647 0.8750
1.2046 0.9967

)

H21 =
(

0.9167 0.3108
0.3424 0.3470

)
H22 =

(
1.0033 0.2453
0.4945 0.4939

)

F11 =
(−0.4206 −0.2806

)
F12 =

(−0.6384 −0.3228
)

F21 =
(−0.2083 −0.1317

)
F22 =

(−0.3105 −0.0650
)

¤

Example 3.4 Let us now revisit Example 3.1. Recall that we consider the two-rule
TS model having the local matrices

A1 =
(

2 0.04a+6.9
−1 0.03b−2.9

)
B1 =

(
0.03b−2.9

1

)

A2 =
(

1 0.04a+6.9
−1 0.03b−2.9

)
B2 =

(
1
5

)

where a and b are real-valued parameters, a,b ∈ [−4,4]. We have already com-
pared the conditions in (Guerra and Vermeiren, 2004), and those of Theorem 3.1,
which both involved 3 sums. Generalizing the conditions to 4 sums, we have GP

0 =
{0, 0} and GF

0 = GH
0 = {0} for Theorem 3.3 and GP

0 = {−1,−1} and GF
0 = GH

0 =
{0,−1,−1} for Theorem 3.4. The values of a and b for which we obtain solutions
are presented in Figures 3.2(a) and 3.2(b). ¤



34 CHAPTER 3. NONQUADRATIC STABILIZATION
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(a) Results using Theorem 3.3.

−5 0 5
−5

0
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b

(b) Results using Theorem 3.4.

Figure 3.2: Feasible solutions when using 4 sums for Example 3.1.

Let us now compare the conditions proposed in this thesis to that of Ding et al.
(2006) and Lee et al. (2011). To consider the simplest case, the relaxation of Wang
et al. (1996) is used on all the possible sums.

Example 3.5 Consider the two-rule TS model (Guerra and Vermeiren, 2004; Ding
et al., 2006) having the local matrices

A1 =
(

1 −b
−1 −0.5

)
B1 =

(
5+b

2b

)

A2 =
(

1 b
−1 −0.5

)
B2 =

(
5−b
−2b

)

where b is a real-valued parameter. The conditions of Theorem 3 in (Ding et al.,
2006) are in fact a special case of Theorem 3.4 in Section 3.3.1, with GP

0 = {0, 0}
and GF

0 = GH
0 = {0}. The number of sums is 4, and the maximum value of b for

which the LMIs are feasible is b = 1.547. For comparison purposes, the conditions
presented in (Guerra and Vermeiren, 2004) (special case of Theorem 3.3, with GP

0 =
GF

0 = GH
0 = {0}) are feasible up to b = 1.539, although they only involve 3 sums.

Applying Theorem 2 of Lee et al. (2011) with GP
0 = {−1, 0, 1} and GH

0 = GF
0 =

{−1, 0} using the relaxation of Wang et al. (1996) and without slack variables, b =
1.565 is obtained, but the conditions involve 5 sums. For the choice GP

0 = {0, 1} and
GH

0 = GF
0 = {0}, which involves only 4 sums, the maximum b is b = 1.54.

Consider now the conditions presented in this chapter, in the light of the dis-
cussion in Section 3.3.2. For Theorem 3.3, to obtain only 4 sums, one can choose
e.g., GP

0 = {0, 0} and GF
0 = GH

0 = {0}. With this choice, the maximum b ob-
tained is b = 1.547, i.e., the same as in (Ding et al., 2006). For Theorem 3.4, ac-
cording to the discussion in Section 3.3.2, we should choose GP

0 = {−1,−1} and
GF

0 = GH
0 = {0,−1,−1}. Indeed, with this we can obtain b = 1.589. Moreover,

by choosing GP
0 = {−1} and GF

0 = GH
0 = {0,−1}, which will lead to only 3 sums,
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we get b = 1.553, a better result than that obtained by the conditions of Ding et al.
(2006). Consequently, a complexity reduction is also obtained. ¤

3.4 Extensions

In what follows, the results presented in Section 3.3.1 are extended to robust con-
trollers, α-sample variation and H∞ control.

3.4.1 Robust controllers

First, let us extend the conditions of Section 3.3.1 for the case when the system is
described by

xxx(k +1) =(AGA
0
+∆A)xxx(k)+(BGB

0
+∆B)uuu(k) (3.15)

i.e., the local matrices are uncertain. The uncertainties considered are of the form
∆A = DGD

0,a
∆aEGE

0,a
and ∆B = DGD

0,b
∆bEGE

0,b
, with ∆T

a ∆a < I, and ∆T
b ∆b < I.

The controller is of the form

uuu(k) =−FGF
0
H−1

GH
0

xxx(k)

and the closed-loop system can be expressed as

xxx(k +1) =(AGA
0
+∆A−BGB

0
FGF

0
H−1

GH
0
−∆BFGF

0
H−1

GH
0
)xxx(k) (3.16)

Then, using the two Lyapunov functions, the following results can be stated.
For Case 1, we have:

Corollary 3.5 The closed-loop system (3.16) is asymptotically stable, if there exist
PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, and HiiiHj

, iiiHj = priii
GH

j
, iii ∈ IGV , j = 0, 1, FiiiF0

, iiiF0 = priii
GF

0
, SiiiS0,a

=

ST
iiiS0,a

> 0, iiiS0,a = priii
GS

0,a
, and SiiiS0,b

= ST
iiiS0,b

> 0, iiiSb
0 = priii

GS
0,b

, where GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕

(GB
0 ∪GE

0,b))∪ (GH
0 ⊕ (GA

0 ∪GE
0,a))∪GH

1 ∪ (GS
0,a⊕GD

0,a⊕GD
0,a)∪ (GS

0,b⊕GD
0,b⊕GD

0,b)
so that




−PGP
0

(∗) (∗) (∗)
EGE

0,a
HGH

0
−SGS

0,a
(∗) (∗)

EGE
0,b
FGF

0
0 −SGS

0,b
(∗)

AGA
0
HGH

0
−BGB

0
FGF

0
0 0

( −HGH
1
−HT

GH
1

+PGP
1

+DGD
0,a
SGS

0,a
DGD

0,a
+DGD

0,b
SGS

0,b
DGD

0,b

)




< 0

(3.17)

Proof: Applying Theorem 3.3 for the system (3.16), we obtain
(

−PGP
0

(∗)
AGA

0
HGH

0
−BGB

0
FGF

0
+∆AHGH

0
−∆BFGF

0
−HGH

1
−HT

GH
1
+PGP

1

)
< 0
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Using the property that

(
0 (∗)

∆AHGH
0

0

)
=

(
0
DGD

0,a

)
∆a

(
EGE

0,a
HGH

0

)
+(∗)

≤
(

0
DGD

0,a

)
SGS

0,a

(
0
DGD

0,a

)T

+
(
EGE

0,a
HGH

0

)T
S−1

GS
0,a

(
EGE

0,a
HGH

0

)

for SGS
0,a

= ST
GS

0,a
> 0, and similarly for

(
0 (∗)

∆BFGF
0

0

)

and applying the Schur complement, we obtain directly (3.17). ¥
For Case 2, we have:

Corollary 3.6 The closed-loop system (3.16) is asymptotically stable, if there exist
PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, and HiiiH0

, iiiH0 = priii
GH

0
, iii ∈ IGV , j = 0, 1, FiiiF0

, iiiF0 = priii
GF

0
, SiiiS0,a

=

ST
iiiS0,a

> 0, iiiS0,a = priii
GS

0,a
, and SiiiS0,b

= ST
iiiS0,b

> 0, iiiSb
0 = priii

GS
0,b

, where GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕

(GB
0 ∪GE

0,b))∪(GH
0 ⊕(GA

0 ∪GE
0,a))∪(GS

0,a⊕GD
0,a⊕GD

0,a)∪(GS
0,b⊕GD

0,b⊕GD
0,b) so that




−HGH
0
−HT

GH
0
+PGP

0
(∗) (∗) (∗)

EGE
0,a
HGH

0
−SGS

0,a
(∗) (∗)

EGE
0,b
FGF

0
0 −SGS

0,b
(∗)

AGA
0
HGH

0
−BGB

0
FGF

0
0 0

(−PGP
1
+DGD

0,a
SGS

0,a
DGD

0,a

+DGD
0,b
SGS

0,b
DGD

0,b

)




< 0

(3.18)

The proof follows the same lines as the proof of Corollary 3.5.

3.4.2 α-sample variation

In this section, we extend the results obtained in Section 3.3.1 using α-sample varia-
tion of the Lyapunov function (Kruszewski et al., 2008).

Recall that by using the controller (repeated here for convenience)

uuu(k) =−FGF
0
H−1

GH
0

xxx(k)

the closed-loop system is given by

xxx(k +1) = AGA
0
xxx(k)−BGB

0
FGF

0
H−1

GH
0

xxx(k)

For Case 1, the following result can be stated:
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Theorem 3.7 The closed-loop system (3.10) is asymptotically stable, if there exist
PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, FiiiFj

, iiiFj = priii
GF

j
, and HiiiHj

, iiiHj = priii
GH

j
, iii ∈ IGV , j = 0, 1, 2, . . . , α ,

where GV = GP
0 ∪GP

α ∪
⋃α−1

i=0 (GF
i ⊕GB

i )∪⋃α−1
i=0 (GH

i ⊕GA
i )∪GH

α so that




−PGP
0

(∗) . . . 0
AGA

0
HGH

0
−BGB

0
FGF

0
−HGH

1
−HT

GH
1

. . . 0
0 AGA

1
HGH

1
−BGB

1
FGF

1
. . . 0

...
... . . .

...
0 0 . . . PGP

α
−HT

GH
α
−HGH

α




< 0

(3.19)

Remark: Note that again, GV denotes the multiset of all the delays that appear in
the sum in (3.19). The terms

⋃α−1
i=0 (GH

i ⊕GA
i ) and

⋃α−1
i=0 (GF

i ⊕GB
i ) are actually the

delays that appear in the terms AGA
i
HGH

i
and BGB

i
FGF

i
, i = 1, 2, . . . , α−1.

Proof: Consider the Lyapunov function V = xxx(k)TH−T
GH

0
PGP

0
H−1

GH
0

xxx(k), with Piii =

PT
iii > 0, for iii∈ IGP

0
, |G0|= nP. The α-sample variation (see (Kruszewski et al., 2008))

of this Lyapunov function can be written as

∆Vα =V (k +α)−V (k) =

=xxx(k +α)TH−T
GH

α
PGP

α
H−1

GH
α

xxx(k +α)− xxx(k)TH−T
GH

0
PGP

0
H−1

GH
0

xxx(k)

=




xxx(k)
xxx(k +1)

...
xxx(k +α)




T



−H−T
GH

0
PGP

0
H−1

GH
0

0 . . . 0

0 0 . . . 0
...

... . . .
...

0 0 . . . H−T
GH

α
PGP

α
H−1

GH
0







xxx(k)
xxx(k +1)

...
xxx(k +α)




The closed-loop system dynamics for α consecutive samples are




Γ0 −I 0 . . . 0 0
0 Γ1 −I . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . Γα−1 −I







xxx(k)
xxx(k +1)

...
xxx(k +α)


 = 0 (3.20)

where Γi = AGA
i
−BGB

i
FGF

i
(HGH

i
)−1, i = 0, 1, . . . , α−1. Using Lemma 2.13, ∆Vα <



38 CHAPTER 3. NONQUADRATIC STABILIZATION

0, if there exist M ∈ Rnx(α+1)×nxα so that

Ω =




−H−T
GH

0
PGP

0
H−1

GH
0

0 . . . 0

0 0 . . . 0
...

... . . .
...

0 0 . . . H−T
GH

α
PGP

α
H−1

GH
α




+M




Γ0 −I 0 . . . 0 0
0 Γ1 −I . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . Γα−1 −I


+(∗) < 0

To obtain LMI constraints that encompass classical cases, a choice is:

M =




0 0 0 . . . 0
H−T

GH
1

0 0 . . . 0

0 H−T
GH

2
0 . . . 0

...
...

... . . .
...

0 0 0 . . . H−T
GH

α




With this choice of M, we have

Ω =




−H−T
GH

0
PGP

0
H−1

GH
0

(∗) . . . 0
(

H−T
GH

1
AGA

0

−H−T
GH

1
BGB

0
FGF

0
H−1

GH
0

)
−H−T

GH
1
−H−1

GH
1

. . . 0

0

(
H−T

GH
2
AGA

1

−H−T
GH

2
BGB

1
FGF

1
H−1

GH
1

)
. . . 0

...
... . . .

...

0 0 . . .

(
H−T

GH
α
PGP

α
H−1

GH
α

−H−T
GH

α
−H−1

GH
α

)




Using Property 1 with diag(HT
GH

i
), i = 1, 2, . . . ,α , Ω < 0 gives directly (3.19). ¥

For Case 2, we have the following conditions:

Theorem 3.8 The closed-loop system (3.10) is asymptotically stable, if there exist
PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, FiiiFj

, iiiFj = priii
GF

j
, and HiiiHj

, iiiHj = priii
GH

j
, iii ∈ IGV , j = 0, 1, 2, . . . , α ,
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where GV = GP
0 ∪GP

α ∪
⋃α−1

i=0 (GF
i ⊕GB

i )∪⋃α−1
i=0 (GH

i ⊕GA
i )∪GH

α so that




(−HGH
0
−HT

GH
0

+PGP
0

)
(∗) . . . 0 0

AGA
0
HGH

0
−BGB

0
FGF

0
−HGH

1
−HT

GH
1

. . . 0 0

0 AGA
1
HGH

1
−BGB

1
FGF

1
. . . 0

...
... . . .

...
...

0 0 . . . −HGH
α−1

−HT
GH

α−1
0

0 0 . . .

(
AGA

α−1
HGH

α−1
−BGB

α−1
FGF

α−1

)
−PGP

α




< 0

(3.21)

Proof: Consider the Lyapunov function V = xxx(k)TP−1
GP

0
xxx(k), with Piii = PT

iii > 0, for
iii ∈ IGP

0
, |G0|= nP. The α-sample variation is

∆Vα =V (k +α)−V (k) =

=xxx(k +α)TP−1
GP

α
xxx(k +α)− xxx(k)TP−1

GP
0
xxx(k)

=




xxx(k)
xxx(k +1)

...
xxx(k +α)




T



−P−1
GP

0
0 . . . 0

0 0 . . . 0
...

... . . .
...

0 0 . . . P−1
GP

α







xxx(k)
xxx(k +1)

...
xxx(k +α)




together with the equality constraint (3.20).
To use Lemma 2.13, one can choose for instance

M =




0 0 0 . . . 0
H−T

GH
1

0 . . . 0 0

0 H−T
GH

2
. . . 0 0

...
...

... . . .
...

0 0 . . . H−T
GH

α−1
0

0 0 . . . 0 P−1
GP

α




Congruence with the matrix diag(HGH
i
,PGP

α
), i = 1, 2, . . . , α − 1 and applying

Property 5 leads directly to (3.21). ¥

Remark: Similarly to Section 3.3.1, depending on the exact sets of indices used,
GP

0 , GF
0 , and GH

0 , relaxations such as (Wang et al., 1996; Tanaka et al., 1998; Tuan
et al., 2001; Sala and Ariño, 2007) can be used.
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3.4.3 H∞-control

In this section, we consider H∞ control using the controller (3.10). Consider then the
system expressed as:

xxx(k +1) = AGA
0
xxx(k)+BGB

0
uuu(k)+EGE

0
www(k)

yyy(k) = CGC
0
xxx(k)+DGD

0
uuu(k)+KGK

0
www(k)

(3.22)

where www(k) denotes the disturbance affecting the system.
The closed-loop system is given by

xxx(k +1) = AGA
0
xxx(k)−BGB

0
FGF

0
H−1

GH
0

xxx(k)+EGE
0
www(k)

yyy(k) = CGC
0
xxx(k)−DGD

0
FGF

0
H−1

GH
0

xxx(k)+KGK
0
www(k)

(3.23)

For Case 1, the following result can be stated:

Theorem 3.9 The closed-loop system (3.23) is asymptotically stable, and the attenu-
ation is at least γ if there exist γ > 0, PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, j = 0, 1, FiiiF0

, iiiF0 = priii
GF

0
, and

HiiiH0
, iiiH0 = priii

GH
0

, iii ∈ IGV , where GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕GB

0 )∪ (GH
0 ⊕GA

0 )∪GK
0 ∪GE

0

so that



−PGP
0

(∗) (∗) (∗)
0 −γI (∗) (∗)

AGA
0
HGH

0
−BGB

0
FGF

0
EGE

0
−HGH

1
−HT

GH
1
+PGP

1
(∗)

CGC
0
HGH

0
−DGD

0
FGF

0
KGK

0
0 −γI


 < 0 (3.24)

Proof: Consider the Lyapunov function V = xxx(k)TH−T
GH

0
PGP

0
H−1

GH
0

xxx(k), with Piii =

PT
iii > 0, for iii ∈ IGP

0
, |GP

0 |= nP. The difference is

∆V1 =V (k +1)−V (k) =

=xxx(k +1)TP−1
GP

1
xxx(k +1)− xxx(k)TP−1

GP
0
xxx(k)

=
(

xxx(k)
www(k)

)T
(

Ω−H−T
GH

0
PGP

0
H−1

GH
0

(∗)
ET

GE
0
H−T

GH
1
PGP

1
H−1

GH
1
(AGA

0
−BGB

0
FGF

0
H−1

GH
0
) ET

GE
0
H−T

GH
1
PGP

1
H−1

GH
1
EGE

0

)(
xxx(k)
www(k)

)

where

Ω = (AGA
0
−BGB

0
FGF

0
H−1

GH
0
)TH−T

GH
1
PGP

1
H−1

GH
1
(AGA

0
−BGB

0
FGF

0
H−1

GH
0
)

Since yyy(k)T yyy(k)− γ2www(k)T www(k) < 0, results that
(

xxx(k)
www(k)

)T
(

(CGC
0
−DGD

0
FGF

0
H−1

GH
0
)T (CGC

0
−DGD

0
FGF

0
H−1

GH
0
) (∗)

KT
GK

0
(CGC

0
−DGD

0
FGF

0
H−1

GH
0
) KT

GK
0
KGK

0
− γ2I

)(
xxx(k)
www(k)

)
< 0 (3.25)
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With the S-procedure, ∆V1 < 0 under constraint (3.25), if

(
Ω−H−T

GH
0
PGP

0
H−1

GH
0

(∗)
ET

GE
0
H−T

GH
1
PGP

1
H−1

GH
1
(AGA

0
−BGB

0
FGF

0
H−1

GH
0
) ET

GE
0
H−T

GH
1
PGP

1
H−1

GH
1
EGE

0

)

+

(
γ−1(CGC

0
−DGD

0
FGF

0
H−1

GH
0
)T (CGC

0
HGH

0
−DGD

0
FGF

0
H−1

GH
0
) (∗)

γ−1KT
GK

0
(CGC

0
−DGD

0
FGF

0
H−1

GH
0
) γ−1KT

GK
0
KGK

0
− γI

)

=

(
(AGA

0
−BGB

0
FGF

0
H−1

GH
0
)T

ET
GE

0

)
H−T

GH
1
PGP

1
H−1

GH
1

(
AGA

0
−BGB

0
FGF

0
H−1

GH
0
EGE

0

)

+ γ−1

(
(CGC

0
−DGD

0
FGF

0
H−1

GH
0
)T

KT
GK

0

)(
CGC

0
−DGD

0
FGF

0
H−1

GH
0
KGK

0

)

−
(
H−T

GH
0
PGP

0
H−1

GH
0

0

0 γI

)

= (∗)
(
H−T

GH
1
PGP

1
H−1

GH
1

0

0 γ−1I

)(
AGA

0
−BGB

0
FGF

0
H−1

GH
0

EGE
0

CGC
0
−DGD

0
FGF

0
H−1

GH
0
KGK

0

)

−
(
H−T

GH
0
PGP

0
H−1

GH
0

0

0 γI

)

Congruence with

(
HT

GH
0

0

0 I

)
gives

(∗)
(
H−T

GH
1
PGP

1
H−1

GH
1

0

0 γ−1I

)(
AGA

0
HGH

0
−BGB

0
FGF

0
EGE

0

CGC
0
HGH

0
−DGD

0
FGF

0
KGK

0

)
−

(
PGP

0
0

0 γI

)
< 0

Using the Schur complement and Property 5, (3.24) results directly. ¥
For Case 2, we have

Theorem 3.10 The closed-loop system (3.23) is asymptotically stable, and the atten-
uation is at least γ if there exist γ > 0, PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, j = 0, 1, FiiiF0

, iiiF0 = priii
GF

0
,

and HiiiH0
, iiiH0 = priii

GH
0

, iii ∈ IGV , where GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕GB

0 )∪ (GH
0 ⊕GA

0 )∪GK
0 ∪

GE
0 so that 



−HGH
0
−HT

GH
0
+PGP

0
(∗) (∗) (∗)

0 −γI (∗) (∗)
AGA

0
HGH

0
−BGB

0
FGF

0
EGE

0
−PGP

1
(∗)

CGC
0
HGH

0
−DGD

0
FGF

0
KGK

0
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Proof: Consider now the Lyapunov function V = xxx(k)TP−1
GP

0
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Since yyy(k)T yyy(k)− γ2www(k)T www(k) < 0, results that
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With the S-procedure,
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Congruence with
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Using the Schur complement and Property 5, (3.26) results directly. ¥

3.5 Summary

This chapter presented a general framework for the design of nonquadratic controllers
for TS fuzzy models. Two methods have been described, the difference between them
coming from the structure of the Lyapunov function used. It has been shown that the
proposed controllers include controllers reported in the recent literature. The design
methods have been illustrated on numerical examples and extended to robust control,
α-sample variation, and H∞ control.
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Chapter 4

Introduction and outline

4.1 Introduction

This part of the thesis deals with the stability analysis, controller and observer design
for switching and periodic systems described by TS models.

First, we consider a particular class of nonlinear models with periodic parame-
ters which can be represented by periodic TS models. Periodic models can be found
in numerous domains such as automotive, aeronautic, aerospace and even computer
control of industrial process. For example in (Chauvin et al., 2005), a periodic dy-
namic model is used to estimate the air/fuel ratio in each cylinder on an internal com-
bustion engine, Gaiani et al. (2004) proposed a periodic model for the rotor blades of
helicopter, Theron et al. (2007) deal with the problem of on-board automatic station
keeping of a small spacecraft on a specific orbit of reference and proposes a periodic
state feedback control law. Other examples are provided by Bittanti and Colaneri
(2000) related to computer control and communication systems.

The stability of linear periodic systems is characterized by the monodromy transi-
tion matrix and by its eigenvalues, called the characteristic multipliers (often referred
to the poles of the system). If all of the characteristic multipliers are in the open unit
disc of the complex plane then the system is asymptotically stable (Farkas, 1994).
Concerning the stabilization problem of those models, results are available in (Farges
et al., 2007). For models including time varying delays, Stepan and Insperger (2006)
proposed methods based on Floquet’s transformation, which is only applied to au-
tonomous systems, and led to conditions for exponential stability.

Some extensions exist to polytopic LPV periodic models, where the stability anal-
ysis is based on the use of quadratic (Farges et al., 2007; Arzelier et al., 2005) or
non-quadratic (Daafouz et al., 2002) Lyapunov functions. In the nonlinear TS con-
text, (Kruszewski and Guerra, 2007; Kerkeni et al., 2011) are dealing with stabiliza-
tion of discrete TS models with periodic parameters.

We consider stability analysis and controller design for periodic, discrete-time
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TS models. To derive the conditions, we use a periodic non-quadratic Lyapunov
function. Although in general, stability analysis and controller design for TS models
relies on the stability and controllability, respectively, of each local model, using this
Lyapunov function we are able to prove the stability of a periodic TS system having
non-stable local models and even unstable subsystems. Moreover, with the conditions
derived using this Lyapunov function we are able to design stabilizing control laws
for switching systems in the case when the local models of the subsystems are not
stable and not stabilizable.

Second, we consider switching systems, which are a class of hybrid systems that
switch between a family of modes or subsystems. Such models can be found in nu-
merous and various domains (Zwart et al., 2010; Venkataramanan et al., 2002; Pasa-
montes et al., 2011; Widyotriatmo and Hong, 2012; Moustris and Tzafestas, 2011;
Zhao and Spong, 2001; Li et al., 2012, 2014), such as automotive, network controlled
application, DC converters, mobile robots, etc. In the case of automotive applica-
tions, switching approaches have been used for different parts of the vehicle: engine
control, HCCI combustion (Liao et al., 2013), air path with turbocharger (Nguyen
et al., 2012b,a, 2013), clutch actuator control (Langjord et al., 2008). Multi-cellular
converters are components which require to control several switches with high fre-
quency to lead to a desired level of conversion. A way to consider the different
possible modes is to use a switching structure (Hauroigné et al., 2012).

In the previously listed applications, the problems addressed are the analysis of
stability and/or the development of controllers or observers. Originally, mainly con-
tinuous time switching systems were considered but recently discrete time approach
have been developed (Chen et al., 2012; Duan and Wu, 2012; Hetel et al., 2011).

Linear switching systems where the switching laws can be arbitrarily chosen have
been considered in (Altafini, 2002) to study the reachable set of such systems. Sta-
bilization and tracking conditions for continuous-time linear switching systems have
been developed in (Baglietto et al., 2013; Battistelli, 2013), delay-dependent stabi-
lization in (Kim et al., 2008), and observability with unknown input has been inves-
tigated in (Boukhobza and Hamelin, 2011). The results for switching systems have
been applied in (Yongqiang Guan and et al., 2013) for the decentralized stabilization
of multiagent systems. State-feedback controller design for nonlinear switching sys-
tems has been presented in (Blanchini et al., 2007) and optimal control in (Bengea
and DeCarlo, 2005). A notable result, although for continuous-time linear switching
systems is the one in (Ji et al., 2007), which concerns the design of switching se-
quences for stabilization and proves that it is sufficient for stabilization to employ a
periodic switching law.

It is well-known that by switching between two – independently stable – subsys-
tems the switching system can be destabilized and conversely, by switching between
unstable subsystems, the states can be made to converge to zero. Our goal is to design
the switching law that stabilizes a given switching system. Switched TS systems have
been investigated mainly in the continuous case where the stability is based on the use
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of a quadratic Lyapunov function (Tanaka et al., 2001; Lam et al., 2002, 2004; Ohtake
et al., 2006) or a piecewise one (Feng, 2003, 2004). For discrete-time switching TS
models, few results exist (Doo et al., 2003; Dong and Yang, 2009). We consider ar-
bitrary switching discrete-time systems and investigate under which conditions they
can be stabilized by a suitably chosen switching law. Instead of attempting to stabi-
lize each subsystem so that the overall system to be stable, we stabilize the system by
switching between possible unstable subsystems. We first present sufficient condi-
tions for being able to stabilize a discrete-time switching nonlinear system simply by
switching between the subsystems; and then construct a switching law that stabilizes
the system.

The material in this part is based on the following publications:

(P3) Zs. Lendek, J. Lauber, and T. M. Guerra, Periodic Lyapunov functions for
periodic TS systems. Systems & Control Letters, vol. 62 , no. 4, pages 303-
310, 2013.

(P4) Zs. Lendek, P. Raica, J. Lauber, T. M. Guerra, Finding a stabilizing switching
law for switching TS models. International Journal of Systems Science, vol.
47, pages 2762-2772, 2016.

(P5) Zs. Lendek, P. Raica, J. Lauber, T. M. Guerra, Observer Design for Discrete-
Time Switching Nonlinear Models. In Hybrid Dynamical Systems, series Lec-
ture Notes in Control and Information Sciences, M. Djemai, M. Defoort, Edi-
tors, vol. 457, pages 27-58. Springer International Publishing, 2015.

(P6) Zs. Lendek, P. Raica, J. Lauber, T. M. Guerra, Nonquadratic stabilization of
switching TS systems. In Preprints of the 2014 IFAC World Congress, pages
7970-7975, Cape Town, South Africa, August 2014.

(P7) Zs. Lendek, P. Raica, J. Lauber, T. M. Guerra, Observer design for switch-
ing nonlinear systems. In Proceedings of the 2014 IEEE World Congress on
Computational Intelligence, IEEE International Conference on Fuzzy Systems,
pages 1-6, Beijing, China, July 2014.

(P8) Zs. Lendek, J. Lauber, T. M. Guerra, P. Raica, Stability analysis of switching
TS models using alpha-samples approach. In Proceedings of the 2013 IFAC
International Conference on Intelligent Control and Automation Science, pages
207-211, Chengdu, China, September 2013.

(P9) Zs. Lendek, J. Lauber, T. M. Guerra, P. Raica, On stabilization of discrete-time
periodic TS systems. In Proceedings of the 2013 IEEE International Confer-
ence on Fuzzy Systems, pages 1-7, Hyderabad, India, July 2013.

(P10) Zs. Lendek, J. Lauber, T.M. Guerra, Switching fuzzy observers for periodic
TS systems. In Proceedings of the 2012 IEEE International Conference on
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Automation, Quality and Testing, Robotics, pages 1-6, Cluj, Romania, May
2012.

(P11) Zs. Lendek, J. Lauber, T.M. Guerra, Switching Lyapunov functions for peri-
odic TS systems. In Proceedings of the 1st IFAC Conference on Embedded
Systems, Computational Intelligence and Telematics in Control, pages 1-6,
Wurzburg, Germany, April 2012.

4.2 Motivating examples

In the literature, one of the main assumptions on switching systems is that the switch-
ing can occur at any time, between any two subsystems. However, for periodic sys-
tems, the extra knowledge of when and between which subsystems the switching
will occur can lead to more relaxed conditions. Consider for instance, the switching
system composed of two linear subsystems, with state matrices

A1 =
(

0.7 0.8
0.2 0.3

)
A2 =

(
0.5 0.8
0.2 a

)

where a is a real-valued parameter. Using e.g., the results in (Daafouz et al., 2002),
one is able to prove stability of the switching system for a ∈ [−0.89, 0.67]. However,
if we know that the system switches from one subsystem to the other at every time
instant, the stability of the switching system can be proven for a ∈ [−5.1, 1.1]. Con-
sequently, by using the knowledge of when and how a periodic system switches, one
can significantly relax the stability conditions. In what follows, we investigate this
possibility for TS systems. We also present extensions for controller and observer
design.

To show the interest in switching systems, consider a system with three subsys-
tems as follows:

Σ1 : xxx(k +1) = h1,1(xxx(k))A1,1xxx(k)+h1,2(xxx(k))A1,2xxx(k)

A1,1 =
(−0.44 −0.26
−0.65 0.62

)
A1,2 =

(
1.1 −0.2

0.53 −0.27

)

h1,1 =
1− sin(x1(k))

2
h1,2 = 1−h1,1

Σ2 : xxx(k +1) = h2,1(xxx(k))A2,1xxx(k)+h2,2(xxx(k))A2,2xxx(k)

A2,1 =
(

0.02 0.6
−0.22 −0.44

)
A2,2 =

(
0.32 −0.15
−1 0.8

)

h2,1 =
1− cos(x1(k))

2
h2,2 = 1−h2,1



4.3. NOTATION 55

Σ3 : xxx(k +1) = h3,1(xxx(k))A3,1xxx(k)+h3,2(xxx(k))A3,2xxx(k)

A3,1 =
(

2 0.5
0.5 2

)
A3,2 =

(
1 0.1

0.5 3

)

h3,1 =
1− exp(−x2

1(k))
2

h3,2 = 1−h3,1

where x1(k) denotes the first element of the state vector xxx at time k. One can switch
from each subsystem to any other one and any subsystem can be active for any num-
ber of samples. However, A1,2 and A2,2 are not Schur and both A3,1 and A3,2 have
eigenvalues larger than 1. Our goal is to find a switching law that stabilizes the
switching system above.

Since none of the subsystems is stable, no existing result in the literature can
prove the stability of this system. Moreover, just switching to one subsystem and
keeping it continuously active is not a solution. However, by switching continuously
between the first and second subsystem, the states converge to zero. This can be
proven by using a periodic Lyapunov function, such as the one proposed in (Lendek
et al., 2013). Consequently, in order to stabilize the system, when starting from the
third subsystem, one can switch to the first or second one and then switch between
these two.

4.3 Notation

In this part we consider stability analysis and controller and observer design of discrete-
time periodic and switching TS systems. For stability analysis, we consider subsys-
tems of the form

xxx(k +1) =
r j

∑
i=1

h ji(zzz j(k))A j,ixxx(k)

= A j,zxxx(k)

(4.1)

for controller design
xxx(k +1) = A j,zxxx(k)+B j,zuuu(k) (4.2)

and for observer design

xxx(k +1) = A j,zxxx(k)+B j,zuuu(k)
yyy(k) = C j,zxxx(k)

(4.3)

where j is the number of the current subsystem, j = 1, 2, . . . , ns, ns being the number
of the subsystems, xxx denotes the state vector, uuu is the input, yyy is the output, r j is the
number of local models in the jth subsystem, zzz j is the scheduling vector, h ji, i =
1, 2, . . . , r j are normalized membership functions, and A j,i, B j,i, C j,i, i = 1, 2, . . . , r j,
j = 1, 2, . . . , ns, are the local models.
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For periodic systems, the subsystems defined above are activated in a sequence
1, 1, . . . , 1︸ ︷︷ ︸

p1

, 2, 2, . . . , 2︸ ︷︷ ︸
p2

, . . . , ns, ns, . . . , ns︸ ︷︷ ︸
pns

, 1, 1, . . . , 1︸ ︷︷ ︸
p1

, etc., where pi denotes the num-

ber of samples for which the ith subsystem is active. In what follows, we will refer
to pi as the period of the ith subsystem.

An underlined variable j denotes the modulo of the variable, i.e., j =( j mod ns)+
1.

We use a Lyapunov function defined only in the switching instants. This also
means that the α-difference in the Lyapunov function corresponds to α consecutive
switches in the system. To illustrate this, consider consider a switching TS model
consisting of two subsystems, each with period 2, i.e., we have:

xxx(k +1) =

{
∑r1

i=1 h1i(zzz1(k))A1ixxx(k) if k = 4m,4m+1

∑r2
i=1 h2i(zzz2(k))A2ixxx(k) if k = 4m+2,4m+3

(4.4)

The switching in the system and in the Lyapunov function are depicted in Fig-
ure 4.1. As can be seen, the Lyapunov function (with matrices P1 and P2) is defined
only in the moments when there is a switching in the system: from A1,z to A2,z or
from A2,z to A1,z, respectively. A 1-sample variation of the Lyapunov function corre-
sponds to the difference between two consecutive values of the Lyapunov function.
A 2-sample variation corresponds to the difference after 2 samples of the Lyapunov
function, etc.

A1z
A1z A2z A2z A1z A1z A2z A2z

A1z

P2 P2 P2P1 P1

... ...

k k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9

1-sample
variation

1-sample
variation

2-sample
variation

2-sample
variation

1-sample
variation

1-sample
variation

Figure 4.1: Switches in the system and in the Lyapunov function.

For the easier notation, we use a directed graph representation of the switching
system (4.1), (4.2) or (4.3). The graph associated to a switching system is G =
{V ,E }, with V being the set of vertices representing the subsystems and E the set of
admissible transitions or switches. Thus, (vi,v j) ∈ E if a switch from subsystem i to
subsystem j is possible. Note that we assume that self-transitions are also possible:
these correspond to the subsystem being active for more than one sample. With a
slight abuse of notation, we also use the notation G = {V ,E ,W }, with W being a
matrix of weights associated to the vertices and edges. By convention, if a transition
between two different subsystems is not possible, the corresponding weight is ∞.
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A path P(vi,v j) between two vertices vi and v j in the graph G is a sequence of
vertices P(vi,v j) = [vp1 , vp2 , . . . , vpnp

] so that vi = vp1 , v j = vpnp
, and (vpk ,vp(k+1))∈

E , k = 1, 2, . . . , np−1. A path between two vertices is in general not unique. A cycle
C = [c1, c2, . . . , cnc , c1] is a path having the same initial and final vertex. Two cycles
are equivalent if the vertices in one are a cyclic permutation of the vertices in the
other. When referring to paths and cycles, we mean elementary paths and cycles, i.e.,
paths in which each vertex may appear only once. A graph is strongly connected if
there is a path between any two vertices in V .

In a weighted graph G = {V ,E ,W }we define the weight of a path W (P(vi,v j))
as the product of all vertices and edges that appear in the path, i.e.,

W ([vp1 , vp2 , . . . , vpnp
]) =

np

∏
k=1

wpk,pk ·
np−1

∏
k=1

wpk,pk+1

The weight of a cycle is similarly defined. A cycle is subunitary, if its weight is less
than 1.

A path in a graph associated to a switching system corresponds to a switching
law. A cycle in a graph associated to a switching system corresponds to a periodic
switching law.

Let us illustrate the notions above on an example.

Example 4.1 Consider a switching system composed of four subsystems, xxx(k+1) =
Ai,zxxx(k), for i = 1, 2, 3, 4, and with admissible switches (1,2), (2,1), (2,3), (3,1),
(4,3), (1,4). Next to this, each subsystem can be active for more than one sample.
The corresponding graph representation is illustrated in Figure 4.2.

1 2

34

Figure 4.2: Graph representation of the switching system in Example 4.1.

The graph is G = {V ,E }, with V = {1, 2, 3, 4} and

E = {(1,1), (1,2), (1,4), (2,1), (2,2), (2,3), (3,1), (3,3), (4,3), (4,4)}
Possible paths between vertices 1 and 3 are P(1,3)= [1, 2, 3] and P(1,3)= [1, 4, 3].
The sequence [1, 2, 1] is a cycle and is equivalent to [2, 1, 2].
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Let the associated weight matrix be given by

W =




1 0.5 ∞ 1
0.5 2 2 ∞
3 ∞ 1 ∞
∞ ∞ 1 2




where ∞ corresponds to an inadmissible switch. The graph with the weights given in
W is illustrated in Figure 4.3.

22

34

1

0.5

0.5

2

1

1

3

2

1

1

Figure 4.3: Graph representation of the switching system with weights in Exam-
ple 4.1.

The weight of the path P(1,3) = [1, 2, 3] is W (P(1,3)) = w11w12w22w23w33 =
2. The weight of the cycle C = [1, 2, 1] is W (C ) = w11w12w22w21 = 0.5 < 1 so this
cycle is subunitary. Since in the graph above there exists a path between any two
vertices, the graph is strongly connected. ¤

Once activated, a subsystem may be active continuously for at least pm
i ∈N+ and

at most pM
i ∈ N+ samples, that are assumed known.

4.4 Outline

The structure of this part is as follows. Chapter 5 presents results regarding stability
analysis, Chapter 6 conditions for stabilization and Chapter 7 conditions for observer
design. Stability analysis is performed for periodic systems and, using an α-sample
variation of the Lyapunov function, for switching systems. Conditions for stabiliza-
tion are presented for three cases: for periodic systems, for switching systems with
any admissible switching law and for switching systems when the switching law can
be chosen. Observer design is also considered for periodic systems, for switching
systems and for the case when the switching law can be chosen. The conditions
presented are discussed and illustrated on numerical examples in all cases.



Chapter 5

Stability analysis

This chapter considers stability analysis of the periodic or switching system (4.1),
repeated here for convenience:

xxx(k +1) =
r j

∑
i=1

h ji(zzz j(k))A j,ixxx(k)

= A j,zxxx(k)

(5.1)

First, we present conditions which, when satisfied, ensure that the periodic sys-
tem (5.1) is asymptotically stable. Second, we show conditions which ensure that the
switching system (5.1) – i.e., the periodic assumption no longer holds – is asymptot-
ically stable. In both cases, the conditions are extended to the α-sample variation of
the Lyapunov function and discussed and illustrated on numerical examples.

5.1 Stability conditions for periodic systems

In this section, we consider the stability analysis of switching TS systems of the
form (5.1). The results are also extended for α-sample variation.

5.1.1 Design conditions

Consider the periodic TS system (5.1), composed of ns subsystems, with each sub-
system j being active for p j samples, j = 1, 2, . . . , ns. Then, the following results
can be stated.

Theorem 5.1 The periodic TS system (5.1) with periods p1, p2, . . . , pns is asymptot-
ically stable, if there exist Pj,i = PT

j,i > 0, M j,i, j = 1, 2, . . . , ns, i = 1, 2, . . . , r j, such

59
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that the following condition is satisfied:



−Pj,z (∗) . . . (∗) (∗)
M j+1,zA j+1,z −M j+1,z +(∗) . . . (∗) (∗)

...
...

...
...

...
0 0 . . . M j+1,z+p j+1−1A j+1,z+p j+1−1 Ω j+1, j+1


 < 0

(5.2)
for j = 1, 2, . . . , ns, where Ω j+1, j+1 =−M j+1,z+p j+1−1 +(∗)+Pj+1,z+p j+1 .

Remark: Note that j +1 is used because due to the periodicity the ns + ith sub-
system is in fact the ith one.

Proof: By considering a periodic Lyapunov function defined only in the instants
when a switching takes place in the system:

V = xxx(k)T Pj,zxxx(k)

if the jth subsystem has been active, the difference in the Lyapunov function is

V (xxx(k + p j+1))−V (xxx(k)) =
(

xxx(k)
xxx(k + p j+1)

)T
(
−Pj,z 0

0 P−1
j+1,z+p j+1

)(
xxx(k)

xxx(k + p j+1)

)

The closed-loop system dynamics during the p j+1 samples are




A j+1,1 −I . . . 0 0
0 A j+1,2 −I . . . 0
...

...
...

...
...

0 0 . . . A j+1,p j+1−1 −I







xxx(k)
xxx(k +1)

...
xxx(k + p j+1)


 = 0

Choosing M =




0 0 . . . 0 0
M j+1,z+1 0 . . . 0 0

0 M j+1,z+2 . . . 0 0
...

...
...

...
...

0 0 . . . M j+1,z+p j+1−1 0
0 0 . . . 0 M j+1,z+p j+1




and ap-

plying Lemma 2.13 leads directly to (5.2). ¥
Remark: Different from the control problem, LMI conditions may be obtained

with virtually any multiplier matrix M, as long as the Lyapunov function uses Pj,z

instead of P−1
j,z as it is used in the control problem. However, to keep the notation

simple, we only present the result for a specific case.
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The result above can easily be extended using α-sample variation of the Lya-
punov function defined in the switching instant. Note that this means that the Lya-
punov function does not have to decrease in every instant where it is defined, but it
should decrease every α instants. Recall that the Lypunov function is only defined in
the switching instants, and the α-difference in the Lyapunov function corresponds to
α consecutive switches in the system. Then, the following result can be formulated:

Theorem 5.2 The periodic TS system (5.1) with periods p1, p2, . . . , pns is asymp-
totically stable, if there exist Pj,i = PT

j,i > 0, M j,l,i, j = 1, 2, . . . , ns, i = 1, 2, . . . , r j,
l = 1, 2, . . . , α , such that the following condition is satisfied:



−Pj,z (∗) . . . (∗) (∗) . . . (∗) (∗)
Γ1,0 −M j+1,1,z +(∗) . . . (∗) (∗) . . . (∗) (∗)

...
...

...
...

...
...

...
...

0 0 . . . Γ2,p j+1 −M j+1,2,z+p j+1 +(∗) . . . (∗) (∗)
...

...
...

...
...

...
...

...
0 0 . . . 0 0 . . . Γα ,t−1 Ω j+α , j+α




< 0

(5.3)

for j = 1, 2, . . . , ns, where t = ∑α
i=1 p j+i, Ω j+α, j+α =−M j+1,α,z+t−1−MT

j+1,α,z+t−1 +
Pj+α,z+t−1 and Γk,l = M j+1,k,z+lA j+k,z+l .

Proof: The proof is similar to that of Theorem 5.1. ¥

Remark: More general conditions may be obtained by using a general matrix M
in Lemma 2.13.

5.1.2 Examples and discussion

First, let us discuss how exactly the conditions derived in Section 5.1 are applied. For
simplicity, consider a switching TS model consisting of two subsystems, each with
period 2, similar to the one presented in Section 4.3.

For this system the conditions of Theorem 5.1 correspond to there exist Pj,i =
PT

j,i > 0, M j,i, j = 1, 2, i = 1, 2, . . . , r j, so that the following conditions are satisfied:



−P1,z (∗) (∗)

M2,zA2,z −M2,z +(∗) (∗)
0 M2,z+1A2,z+1 −M2,z+1 +(∗)+P2,z+2


 < 0



−P2,z (∗) (∗)

M1,zA1,z −M1,z +(∗) (∗)
0 M1,z+1A1,z+1 −M1,z+1 +(∗)+P1,z+2


 < 0

(5.4)

Relaxed LMI conditions can be formulated using Lemma 2.11, e.g.,
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Corollary 5.3 The system (5.1) is asymptotically stable if there exist Pj,i = PT
j,i > 0,

M j,i, j = 1, 2, i = 1, 2, . . . , r j, so that

2
rl+1−1

Γliimno +Γl jimno +Γli jmno < 0

i, j, l,m,n,o = 1, 2, where

Γli jmno =




−Pl,i (∗) (∗)
Ml+1,iAl+1, j −Ml+1,i +(∗) (∗)

0 Ml+1,mAl+1,n −Ml+1,m +(∗)+Pl+1,o




Let us now consider a 2-sample variation of the Lyapunov function. The con-
ditions of Theorem 5.2 become there exist Pj,i = PT

j,i > 0, M j,l,i, j, l = 1, 2, i =
1, 2, . . . , r j, so that the following conditions are satisfied:



−P1,z (∗) (∗) (∗) (∗)
M2,1,zA2,z −M2,1,z +(∗) (∗) (∗) (∗)

0 M2,1,z+1A2,z+1 −M2,1,z+1 +(∗) (∗) (∗)
0 0 M2,2,z+2A1,z+2 −M2,2,z+2 +(∗) (∗)
0 0 0 M2,2,z+3A1,z+3

(−M2,2,z+3+
(∗)+P1,z+4

)




< 0




−P2,z (∗) (∗) (∗) (∗)
M1,1,zA1,z −M1,1,z +(∗) (∗) (∗) (∗)

0 M1,1,z+1A1,z+1 −M1,1,z+1 +(∗) (∗) (∗)
0 0 M1,2,z+2A2,z+2 −M1,2,z+2 +(∗) (∗)
0 0 0 M1,2,z+3A2,z+3

(−M1,2,z+3+
(∗)+P2,z+4

)




< 0

Similarly to the 1-sample variation, relaxed LMI conditions can be formulated.
Although the number of samples to be used in the variation of the Lyapunov

function can be chosen as ns, this is not necessary. On the other hand, by increasing
α , the number and the dimension of the LMIs to be solved increases.

In developing the conditions, in Finsler’s lemma we used the same matrices in
the multiplication of the same subsystem, i.e., we have M1A1, M2A2, etc., even for
different time instants. Different matrices can be used at each time instant, or even a
completely general multiplier can be used in Lemma 2.13. This would significantly
increase the number of decision variables. As it is, the number of decision variables
is ∑ns

i=1 rin2
x + ∑ns

i=1 rinx(nx + 1)/2, where nx denotes the dimension of the state. It
should be noted that the number of decision variables depends on the number of
the subsystems, the number of rules in each subsystem, and the dimension of the
state. The number and the dimension of the actual LMIs to be solved depends on the
relaxation used.

Note that the conditions do not require that the local matrices of the TS systems
or even the individual subsystems are stable. We illustrate this on the following
example.
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Example 5.1 Consider the switching fuzzy system with two subsystems as follows:

xxx(k +1) =
2

∑
i=1

h1i(zzz1(k))A1ixxx(k)

with

A11 =
(−0.44 −0.26
−0.65 0.62

)
A12 =

(
1.1 −0.2

0.53 −0.27

)

with h11 = exp(−x2
1), h12 = 1−h11 and

xxx(k +1) =
2

∑
i=1

h2i(zzz1(k))A2ixxx(k)

with

A21 =
(

0.02 0.6
−0.22 −0.44

)
A22 =

(
0.32 −0.15
−1 0.8

)

with h21 = cos(x1)2, h22 = 1−h21.
The local models A12 and A22 are unstable, their eigenvalues being

(
1.01 −0.18

)
and

(
0.10 1.01

)
, respectively.

By switching between the two subsystems with a period p1 = 2 for the first sub-
system and p2 = 2 for the second subsystem, the resulting periodic system is asymp-
totically stable, as illustrated in Figure 5.1.

2 4 6 8 10 12 14

−1

−0.5

0

0.5

1

Time

S
ta

te
s

Figure 5.1: A trajectory of the states of the periodic system.

For this periodic system it is not possible to find either a quadratic or a non-
quadratic Lyapunov function, common for both subsystems, as the corresponding
LMIs are unfeasible.
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Solving the conditions of Theorem 5.1 using the relaxation of (Wang et al., 1996),
we obtain

P11 =
(

2.7195 −0.6733
−0.6733 3.7396

)
P12 =

(
3.9735 −1.7562
−1.7562 3.6588

)

M11 =
(

4.4862 0.0610
−0.0699 3.3215

)
M12 =

(
4.2601 0.6030
−0.3073 2.5510

)

P21 =
(

4.3030 0.0691
0.0691 2.1985

)
P22 =

(
5.2906 0.0310
0.0310 1.9130

)

M21 =
(

3.9873 −0.6752
−0.6623 3.5612

)
M22 =

(
3.5420 −1.0998
−0.7195 3.4535

)

Thus, the stability of the periodic system is proven. ¤

5.2 Analysis of switching systems

In the previous section, we have derived conditions by exploiting the fact that the
subsystems are activated periodically. This section presents results for the case when
the switching is not necessarily periodic.

5.2.1 Stability conditions

Lets us now consider the stability of the origin of the switching system

xxx(k +1) = A j,zxxx(k) (5.5)

Example 5.2 As an example, consider the system depicted in Figure 9.2. Switches
are possible between subsystems 1 and 2 (in both directions), from 2 to 3, from 3 to
1, and from 3 to 3, i.e., subsystem 3 can remain continuously active. Consequently,
pm

1 = pM
1 = pm

2 = pm
2 = 1, pm

3 = 1, pM
3 = ∞.

Due to the switching between the subsystems, a possibility to establish stability
is to consider a switching Lyapunov function, and verify that it decreases during each
subsystem and during each switch. This is in effect an extension to TS models of the
results of (Daafouz et al., 2002), that was established for linear systems.

However, since subsystems 1 and 2 can only be active for one time instance, it can
be seen that to guarantee the systems stability it is enough if the (switching) Lyapunov
function decreases while subsystem 3 is active (since it can be continuously active),
and it also decreases during the cycles [1, 2, 1] and [1,2,3,1]. ¤

To derive stability conditions, consider the switching Lyapunov function

V = xxx(k)T Pi, j,zxxx(k) (5.6)
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1 2

3

Figure 5.2: Switching system for Example 5.2.

defined during the switches, i.e., on the edges of the associated graph G = {V ,E },
with (vi,v j) ∈ E .

Remark: If a subsystem i may be active for several number of samples, the edge
(vi,vi) is also considered.

In a first step the following result can be formulated:

Theorem 5.4 The origin of the switching system (5.5) is asymptotically stable, if
there exist Pi, j,k = PT

i, j,k > 0, Mi, j,k, (vi,v j) ∈ E , k = 1, 2, . . . , r, such that

( −Pi, j,z (∗)
M j,l,zA j,z −M j,l,z−MT

j,l,z +Pj,l,z+1

)
< 0 (5.7)

for all admissible paths P(vi,vl) = [vi,v j,vl], vi ∈ V .

Proof: Consider the switching Lyapunov function (5.6), defined on the edges
of the associated graph, with xxx(k)T Pi, j,zxxx(k) being active during the transition from
vertex i to vertex j. The difference in the Lyapunov function for two consecutive
samples is

∆V = xxx(k +1)T Pj,l,z+1xxx(k +1)− xxx(k)T Pi, j,zxxx(k)

=
(

xxx(k)
xxx(k +1)

)T (−Pi, j,z 0
0 Pj,l,z+1

)(
xxx(k)

xxx(k +1)

)

where [vi,v j,vl] is an admissible path.
During the transition for j to l, the dynamics of the system are described by

(
A j,z −I

)(
xxx(k)

xxx(k +1)

)
= 0

Using Lemma 2.13, the difference is the Lyapunov function is negative, if there
exists M such that

(−Pi, j,z 0
0 Pj,l,z+1

)
+M

(
A j,z −I

)
+(∗) < 0
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By choosing

M =
(

0
M j,l,z

)

we have directly (5.7). ¥
Remark: It should be noted that in order to reduce the conservativeness of the

solution and exploit available relaxations, a double sum can also be used in the matrix
M, i.e., M can be chosen as

M =
(

0
M j,l,z,z+1

)

leading to the following corollary:

Corollary 5.5 The origin of the switching system (5.5) is asymptotically stable, if
there exist Pi, j,k = PT

i, j,k > 0, Mi, j,k,β , (vi,v j) ∈ E , (v j,vl) ∈ E , k,β = 1, 2, . . . , r, such
that ( −Pi, j,z (∗)

M j,l,z,z+1A j,z −M j,l,z,z+1−MT
j,l,z,z+1 +Pj,l,z+1

)
< 0 (5.8)

for all admissible paths P(vi,vl) = [vi,v j,vl], vi ∈ V .

In this case, using Lemma 2.11, we can formulate the conditions as LMIs, as
follows:

Corollary 5.6 The origin of the switching system (5.5) is asymptotically stable, if
there exist Pi, j,k = PT

i, j,k > 0, Mi, j,k,l , (vi,v j) ∈ E , k, l = 1, 2, . . . , r, such that

Γi, j,l
kk < 0
2

r−1
Γi, j,l,γ

kk +Γi, j,l
kβ +Γi, j,l

βk < 0, k,β = 1, 2, . . . , r

with

Γi, j,l,γ
kβ =

( −Pi, j,k (∗)
M j,l,k,γA j,β −M j,l,k,γ +(∗)+Pj,l,γ

)

for all admissible paths P(vi,vl) = [vi,v j,vl], v j ∈ V .

Let us now consider an α-sample variation of the Lyapunov function. As it has
been proven by Kruszewski and Guerra (2007), it is not necessary that the Lyapunov
function decreases every sample, but it is sufficient if it decreases every α samples,
α > 1. Considering the Lyapunov function (5.6), the following result can be formu-
lated:



5.2. ANALYSIS OF SWITCHING SYSTEMS 67

Theorem 5.7 The origin of the switching system (5.5) is asymptotically stable, if
there exist α ∈ N+, Pi, j,k = PT

i, j,k > 0, Mi, j,k, (vi,v j) ∈ E , k = 1, 2, . . . , r, such that




−Pi1,i2,z (∗) . . . (∗)
Mi2,i3,zAi2,z −Mi2,i3,z +(∗) . . . (∗)

0 Mi3,i4,z+1Ai3,z+1 . . . (∗)
...

... . . .

(
Miα+1,iα+2,z+α−1 +(∗)

+Piα+1,iα+2,z+α

)




< 0 (5.9)

for all admissible paths P(vi1 ,viα+2) = [vi1 , vi2 , . . . , viα+2 ].

Proof: Consider the switching Lyapunov function (5.6), defined on the edges of
the associated graph, with Pi, j,z being active during the transition from vertex i to
vertex j. The difference in the Lyapunov function for α consecutive samples is

∆V = xxx(k +α)T Piα+1,iα+2,z+αxxx(k +α)− xxx(k)T Pi1,i2,zxxx(k)

=
(

xxx(k)
xxx(k +α)

)T (−Pi1,i2,z 0
0 Piα+1,iα+2,z+α

)(
xxx(k)

xxx(k +α)

)

where [vi1 ,vi2 , . . . ,viα+2 ] is an admissible path.
Along the switching sequence [vi1 ,vi2 , . . . ,viα+2 ], the dynamics of the system are

described by 


Ai2,z −I 0 . . . 0
0 Ai3,z −I . . . 0
...

...
...

...
0 0 0 . . . −I







xxx(k)
xxx(k +1)

...
xxx(k +α)


 = 0

Similarly to the proof of Theorem 5.4, using Lemma 2.13, the difference in the
Lyapunov function is negative, if there exists M such that



−Pi1,i2,z 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . Piα+1,iα+2,z+α


+M




Ai2,z −I 0 . . . 0
0 Ai3,z −I . . . 0
...

...
...

...
0 0 0 . . . −I


+(∗) < 0

By choosing

M =




0 0 . . . 0
Mi1,i2,z 0 . . . 0

0 Mi2,i3,z+1 . . . 0
...

... . . .
...

0 0 . . . Miα+1,iα+2,z+α




we have directly (5.9). ¥
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5.2.2 Discussion and examples

Let us now discuss the developed conditions, in particular those concerning the α-
sample variation of the Lyapunov function, on an example.

Example 5.3 To illustrate the application of the conditions, let us revisit Exam-
ple 5.2. The graph is G = {V ,E }, with V = {1, 2, 3} and

E = {(1,2), (2,1), (2,3), (3,1), (3,3)}

The edge (3,3) is introduced in order to take into account that subsystem 3 can be
continuously active. The Lyapunov function is defined for every switch, i.e., we have
Pi,2,z, P2,1,z, P2,3,z, etc. The conditions of Theorem 5.4 require that the Lyapunov
function decreases with every switch/every sample, including here self-transitions,
i.e., for all (vi,v j) ∈ E . That is, we have the conditions:

( −P1,2,z (∗)
M2,1,zA2,z −M2,1,z +(∗)+P2,1,z+1

)
< 0

( −P1,2,z (∗)
M2,3,zA2,z −M2,3,z +(∗)+P2,3,z+1

)
< 0

( −P2,3,z (∗)
M3,3,zA3,z −M3,3,z +(∗)+P3,3,z+1

)
< 0

( −P2,3,z (∗)
M3,1,zA3,z −M3,1,z +(∗)+P3,1,z+1

)
< 0

...

implying that each subsystem has to be stable. On the other hand, a 2-sample varia-
tion means that the Lyapunov function has to decrease along paths of lengths 3, i.e.,
we have the conditions:




−P1,2,z (∗) (∗)
M2,1,zA2,z −M2,1,z +(∗) (∗)

0 M1,2,z+1A1,z+1 −M1,2,z+1 +(∗)+P1,2,z+2


 < 0




−P1,2,z (∗) (∗)
M2,3,zA2,z −M2,3,z +(∗) (∗)

0 M3,1,z+1A3,z+1 −M3,1,z+1 +(∗)+P3,1,z+2


 < 0




−P1,2,z (∗) (∗)
M2,3,zA2,z −M2,3,z +(∗) (∗)

0 M3,3,z+1A3,z+1 −M3,3,z+1 +(∗)+P3,3,z+2


 < 0

...



5.3. CONCLUSIONS 69

Consider the following local models of the TS system above:

A1,1 =
(

0.23 0.2
0.03 0.9

)
A1,2 =

(
0.47 0.47
0.23 0.16

)

A2,1 = A2,1 =
(

1.1 0
0.2 0.8

)

A3,1 =
(

0.11 0.09
0.09 0.07

)
A3,2 =

(
0.32 0.30
0.09 0.38

)

The second subsystem is actually linear, but it is unstable. Due to this, available meth-
ods, including the extension of (Daafouz et al., 2002) to TS models yields unfeasible
LMIs.

The LMIs given by Theorem 5.4 are also unfeasible. However, a 2-sample vari-
ation of the Lyapunov function (the conditions of Theorem 5.7 applied for α = 2)
results in a feasible set of LMIs. This is thanks to the fact that subsystem 2 can only
be active for one sample, and therefore the Lyapunov function may decrease along a
switching path of length at least 2. ¤

5.3 Conclusions

In this chapter we presented stability conditions for discrete-time periodic and switch-
ing systems represented by Takagi-Sugeno fuzzy models. The conditions have been
developed using a periodic and a switching Lyapunov function defined on the switches.
For periodic systems we have exploited the periodicity of the systems, while for
switching systems we assumed that the switching sequence is not known in advance
and it cannot be directly influenced. Thus, the conditions have to be solved for all
admissible switches. The developed conditions have been formulated as LMIs and
are able to prove stability of switching systems where one or more subsystems are
unstable.

A shortcoming of the proposed conditions is the computational complexity of
generating all the switching paths of length α , in particular for large α and large-
scale switching systems and in consequence, the large number of LMIs that has to be
solved. The LMI conditions can be relaxed by double sums, e.g., using Pi, j,z,z instead
of Pi, j,z, or even several sums in the Lyapunov function. Unfortunately, reducing the
conservativeness of the conditions by introducing additional sums in the Lyapunov
function (eventually leading to ANS conditions) also increases the number of LMIs.

Recall that we assume that the switching sequence is not known in advance and it
cannot be directly influenced. With this assumption the stability conditions actually
state that the switching system is stable if the Lyapunov function decreases along
every path of length α . Naturally, this is the worst-case, i.e., all possible combinations
on switches between the subsystems are taken into account. If the switching sequence
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can be chosen, or the goal is to find a stabilizing switching sequence, the conditions
can be relaxed. Stabilization in such a way will be addressed in the next chapter.



Chapter 6

Stabilization of switching systems

This chapter considers stabilization of the periodic or switching system (4.2), re-
peated here for convenience:

xxx(k +1) = A j,zxxx(k)+B j,zuuu(k) (6.1)

First, we present conditions for designing a state-feedback control law, which,
when satisfied, ensure that the periodic system (6.1) is asymptotically stable. Sec-
ond, we show conditions for controller design such that the closed-loop switching
system (6.1) – when the switches are not periodic and they cannot be influences – is
asymptotically stable. Finally, under the assumption that the switching law can be
chosen, we present conditions to chose a law that stabilizes the states of the system
to zero. In all the cases the conditions are discussed and illustrated on numerical
examples.

6.1 Controller design for periodic systems

6.1.1 Design conditions

In the previous chapter we have considered stability analysis of periodic systems.
Now we extend the obtained results to controller design for periodic TS systems.

Consider the switching TS model (6.1), consisting of ns subsystems, each having
the period (being active for) pi samples, i = 1, 2 . . . , ns. For this system, we use the
switching control input of the form

uuu(k) =−Fi,zH−1
i,z xxx(k) (6.2)

when the ith subsystem is active, i = 1, 2, . . . , ns. The closed-loop dynamics are

xxx(k +1) = (Ai,z−Bi,zFi,zH−1
i,z )xxx(k) (6.3)

which is also a periodic system.
For (6.3) the following result can be stated:

71
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Theorem 6.1 The periodic TS system (6.1) with periods p1, p2, . . . , pns is asymp-
totically stabilized by the control input (6.2), if there exist Pj,i = PT

j,i > 0, Fj,i, H j,i

j = 1, 2, . . . , ns, i = 1, 2, . . . , r j, such that the following condition is satisfied:




(
−H j+1,z−HT

j+1,z

+Pj,z

)
(∗) . . . (∗) (∗)

Ω j+1,1 −H j+1,z+1 +(∗) . . . (∗) (∗)
...

...
...

...
...

0 0 . . . Ω j+1,p j+1 −Pj+1,z+p j+1




< 0

(6.4)
for j = 1, 2, . . . , ns, where Ω j+1,l = A j+1,z+l−1H j+1,z+l−1−B j+1,z+l−1Fj+1,z+l−1.

Proof: Consider the switching Lyapunov function, defined only in the instants
when a switching takes place in the system:

V = xxx(k)T P−1
j,z xxx(k)

if the active subsystem was j, j = 1, 2 . . . , ns.
The difference in the Lyapunov function is

V (xxx(k + p j+1))−V (xxx(k)) =

=
(

xxx(k)
xxx(k + p j+1)

)T
(
−P−1

j,z 0
0 P−1

j+1,z+p j+1

)(
xxx(k)

xxx(k + p j+1)

)

The closed-loop system dynamics during the p j+1 samples are




ϒ j+1,1 −I . . . 0 0
0 ϒ j+1,2 −I . . . 0
...

...
...

...
...

0 0 . . . ϒ j+1,p j+1−1 −I







xxx(k)
xxx(k +1)

...
xxx(k + p j+1)


 = 0

with ϒ j+1,i = A j+1,z+i−B j+1,z+iFj+1,z+iH−1
j+1,z+i for i = 1, 2 . . . , p j+1−1.

Choosing M =




0 0 . . . 0 0
H−T

j+1,z+1 0 . . . 0 0
0 H−T

j+1,z+2 . . . 0 0
...

...
...

...
...

0 0 . . . HT
j+1,z+p j+1−1 0

0 0 . . . 0 P−1
j+1,z+p j+1




and ap-
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plying Lemma 2.13 leads to




−P−1
jz (∗) . . . (∗) (∗)

Ω j+1,1 −H−1
j+1,z+1 +(∗) . . . (∗) (∗)

...
...

...
...

...
0 0 . . . Ω j+1,p j+1 −P−1

j+1,z+p j+1




< 0

with Ω j+1,i = H−T
j+1,z+i(A j+1,z+i−1−B j+1,z+i−1Fj+1,z+i−1H−1

j+1,z+i−1) for i = 1, 2, . . . , p j+1−
1, Ω j+1,t = P−T

j+1,z+t(A j+1,z+t−1−B j+1,z+t−1Fj+1,z+t−1H−1
j+1,z+t−1).

Congruence with




HT
j+1,z 0 . . . 0 0
0 HT

j+1,z+1 . . . 0 0
...

...
...

...
...

0 0 . . . HT
j+1,z+p j+1−1 0

0 0 . . . 0 Pj+1,z+p j+1




and applying Property 5 leads directly to (6.4). ¥

In what follows, we extend the above result to α-sample variation (Kruszewski
et al., 2008). When α-sample variation of the Lyapunov function is considered, the
following result can be stated.

Theorem 6.2 The periodic TS system (6.1) with periods p1, p2, . . . , pns is asymptot-
ically stabilized by the control input (6.2), if there exist Pj,i = PT

j,i > 0, Fj,i, and H j,i,
j = 1, 2, . . . , ns, i = 1, 2, . . . , r j, l = 1, 2, . . . , α , such that the following condition is
satisfied:




(
−H j+1,z−HT

j+1,z

+Pj,z

)
(∗) . . . (∗) (∗)

Ω j+1,1 −H j+1,z+1 +(∗) . . . (∗) (∗)
...

...
...

...
...

0 0 . . . Ω j+α,p j+1 −Pj+α,z+t




< 0

(6.5)
for j = 1, 2, . . . , ns, where Ω j+i,l = A j+i,z+l−1H j+i,z+l−1−B j+i,z+l−1Fj+i,z+l−1, i =
1, 2, . . . , α , l = 1, 2, . . . , t, and t = ∑α

i=1 p j+i.

Proof: The proof follows the same line as that of Theorem 6.1. ¥



74 CHAPTER 6. STABILIZATION OF SWITCHING SYSTEMS

6.1.2 Examples and discussion

Let us discuss first how exactly the controller design conditions derived in Sec-
tion 6.1.1 are applied. Consider a switching TS model consisting of two subsystems,
each with period 2, and each having two rules, i.e., we have:

xxx(k +1) =

{
∑2

i=1 h1i(zzz1(k))(A1ixxx(k)+B1iuuu(k)) if k = 4m,4m+1

∑2
i=1 h2i(zzz2(k))(A2ixxx(k)+B2iuuu(k)) if k = 4m+2,4m+3

(6.6)

For the system (6.6) the conditions of Theorem 6.1 correspond to there exist
Pj,i = PT

j,i > 0, H j,i, and Fj,i, j, i = 1, 2, so that the following conditions are satisfied:


−H2,z +(∗)+P1,z (∗) (∗)
A2,zH2,z−B2,zF2,z −H2,z+1 +(∗) (∗)

0 A2,z+1H2,z+1−B2,z+1F2,z+1 −P2,z+2


 < 0



−H1,z +(∗)+P2,z (∗) (∗)
A1,zH1,z−B1,zF1,z −H1,z+1 +(∗) (∗)

0 A1,z+1H1,z+1−B1,z+1F1,z+1 −P1,z+2


 < 0

(6.7)

The conditions of Theorem 6.2, e.g., for a 2-sample variation become there exist
Pj,i = PT

j,i > 0, H j,i, and Fj,i, j, i = 1, 2, so that the following conditions are satisfied:



−H2,z +(∗)+P1,z (∗) (∗) (∗) (∗)
Ω21 −H2,z+1 +(∗) (∗) (∗) (∗)

0 Ω22 −H1,z+2 +(∗) (∗) (∗)
0 0 Ω13 −H1,z+3 +(∗) (∗)
0 0 0 Ω14 −P1,z+4




< 0




−H1,z +(∗)+P2,z (∗) (∗) (∗) (∗)
Ω11 −H1,z+1 +(∗) (∗) (∗) (∗)

0 Ω12 −H2,z+2 +(∗) (∗) (∗)
0 0 Ω23 −H2,z+3 +(∗) (∗)
0 0 0 Ω24 −P2,z+4




< 0

Ω ji = A j,z+i−1H j,z+i−1−B j,z+i−1Fj,z+i−1

As illustrated in the above conditions, for each subsystem we have a matrix inequal-
ity. In the ith matrix inequality, the first line corresponds to Pi,z, the next pi+1 lines
correspond to the i+1th subsystems, etc.

As can be expected based on the stability conditions, in order for the closed-loop
switching system to be stable it is not necessary that each subsystem is stabilized.
We illustrate this on the following example, adopted from Kruszewski and Guerra
(2007).

Example 6.1 Consider the periodic fuzzy system, composed of two subsystems,
with the local matrices:

A11 =
(

1.5 10
0 0.5

)
A12 =

(
0.5 10
0 0

)
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Figure 6.1: Trajectories of the closed-loop system – Example 6.1.

A21 =
(

1+a 1
0 0.5

)
A22 =

(
1 10
0 0.5

)

B11 = B12 =
(

0
0

)
B21 = B22 =

(
1
0

)

where ‘a’ is a real-valued parameter.
The control design for this system cannot be performed using a Lyapunov func-

tion that is common for both subsystems, be that quadratic or nonquadratic. In the
switching system above, the first subsystem is not stabilizable, as B11 = B12 = 0, and
the first local model A11 is unstable.

With the approach of Kruszewski and Guerra (2007), the maximum interval for
‘a’ that can be obtained is [−250,250]. Using the conditions of Theorem 6.1, we
obtain for a = 1500

H11 =
(

240.8746 −33.2523
−34.5795 10.3966

)
H12 =

(
239.2061 −37.6113
−11.2734 7.4435

)

H21 =
(

374.8946 8.7529
0.0039 33.2571

)
H22 =

(
374.8945 8.7468
−0.0039 33.2570

)

P11 =
(

561.3074 8.7531
8.7531 18.2803

)
P12 =

(
561.3065 8.7466
8.7466 18.2802

)

P21 =
(

295.0400 −45.1654
−45.1654 9.8090

)
P22 =

(
300.2630 −38.8747
−38.8747 7.7637

)

F21 = 105 (
5.6272 0.1325

)
F22 =

(
374.8512 417.8578

)

which stabilizes the system. Moreover, the value of ‘a’ can still be increased. Tra-
jectories of the closed-loop system for a = 1500 are shown in Figure 6.1. The
membership functions used were h11 = exp(−x2

1), h12 = 1−h11 and h21 = cos(x1)2,
h22 = 1−h21. ¤
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To illustrate the efficiency of the proposed method, consider now a more complex
example.

Example 6.2 Consider the periodic fuzzy system, composed of 5 subsystems, with
the local matrices:

A11 =
(

2 0
0 2

)
A12 =

(
2 0
0 2

)

B11 =
(

0
0

)
B12 =

(
1
0

)

A21 =
(

1.5 1
0 1.5

)
A22 =

(
1.5 1
0 1.5

)

B21 =
(

0
1

)
B22 =

(
0
0

)

A31 =
(

1 0
0 2

)
A32 =

(
1.5 0
0 .5

)

B31 =
(

1
2

)
B32 =

(
1
2

)

A41 =
(−0.44 −0.26
−0.65 0.62

)
A42 =

(
1.1 −0.2

0.53 −0.27

)

B41 =
(

1
0

)
B42 =

(
1
0

)

A51 =
(

1.32 −0.15
−1 0.8

)
A52 =

(
0.02 1.6
−0.22 −0.44

)

B51 =
(

1
−1

)
B52 =

(
1
−1

)

and periodicity p = [1, 1, 1, 2, 2].
Again, several local models are not controllable and not stable, and consequently

the control design cannot be performed using a Lyapunov function that is common for
both subsystems, be that quadratic or nonquadratic. However, by using a switching
control law, the system is stabilized. A trajectory of the closed-loop system is shown
in Figure 6.2. To design the controller, 18 4×4 and 36 6×6 LMIs have been solved,
and 90 decision variables have been computed. ¤

Relaxed LMI conditions can easily be obtained using e.g., Lemma 2.11. The
number of decision variables in the LMIs for the 1-sample variation is ∑ns

i=1 ri(n2
x +

nx(nx +1)/2+nxnu), where nx denotes the dimension of the state and nu the dimen-
sion of the input.

Compared to the possibilities in case of stability conditions, the freedom in choos-
ing the multiplier in Lemma 2.13 is much smaller. This is because the controller is
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Figure 6.2: A trajectory of the closed-loop system – Example 6.2.

fixed for each subsystem. Also in this case, the number of decision variables depends
only on the number of the subsystems, the number of rules in each subsystem, and
the dimension of the state and input. The number and the dimension of the actual
LMIs to be solved depends on the relaxation used and on the sample-variation used,
as by increasing α , the number and dimension of the LMIs to be solved increases.

Let us illustrate this on the following example:

Example 6.3 Consider a periodic fuzzy system consisting of 3 subsystems, each
with 2 rules, 2 states, and 1 input. A comparison of the number and dimension of the
LMIs to be solved for controller design for different periodicity of the subsystems and
different sample variation, using the relaxation of Wang et al. (1996) on all possible
pairs is given in Table 6.1. The number of decision variables is ∑ns

i=1 ri(n2
x + nx(nx +

1)/2+nxnu) = 54, in all the cases.
As can be seen, with a higher α-sample variation used, the number of LMIs and

their dimension quickly increases. ¤

6.2 Controller design for switching systems

In this section, we present relaxed LMI conditions for the stabilization of switching
TS systems. Two different switching nonquadratic Lyapunov functions are used and
therefore two different sets of conditions are developed. We assume that the set of
the admissible switches is known, but the exact switching sequence is not known
in advance. This is a worst-case assumption. However, by taking into account the
admissible switches, it is possible to develop conditions for the stabilization of some
systems with uncontrollable local models.
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Table 6.1: Comparison of number of LMIs
Periods Samples Number Dimension
1, 1, 1 1 18 4×4

1, 1, 2 1
12
18

4×4
6×6

1, 2, 2 1
36
6

6×6
4×4

2, 2, 2 1 54 6×6

2, 2, 3 1
36
54

6×6
8×8

2, 3, 3 1
18
108

6×6
8×8

1, 1, 1 2 54 6×6

1, 1, 2 2
18
108

6×6
8×8

1, 2, 2 2
162
108

10×10
8×8

2, 2, 2 2 486 10×10

1, 1, 1 3 162 8×8
1, 1, 2 3 486 10×10

6.2.1 Design conditions

Recall that the switching control law we consider is

uuu(k) =−Fi,zH−1
i,z xxx(k) (6.8)

and the closed-loop system is expressed as

xxx(k +1) = (Ai,z−Bi,zFi,zH−1
i,z )xxx(k) (6.9)

In what follows, we use two switching Lyapunov functions:

V = xxx(k)T P−1
i, j,zxxx(k) (6.10)

and
V = xxx(k)T H−T

i,z Pi, j,zH−1
i,z xxx(k) (6.11)

respectively, defined during the switches, i.e., on the edges of the associated graph
G = {V ,E }, with (vi,v j) ∈ E . The subscript indices i, j denote that the correspond-
ing Lyapunov function is active if we switch from subsystem i to subsystem j.
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Let us consider first (6.10). The difference in the Lyapunov function is

∆V = xxx(k +1)T P−1
j,l,z+1xxx(k +1)− xxx(k)T P−1

i, j,zxxx(k)

=
(

xxx(k)
xxx(k +1)

)T
(
−P−1

i, j,z 0
0 P−1

j,l,z+1

)(
xxx(k)

xxx(k +1)

)

where [vi,v j,vl] is an admissible path.
Remark: If a subsystem i may be active for several samples, the Lyapunov func-

tion above is in fact used to prove its stability. However, if a subsystem is active for
only one sample, it is not necessary for it to be stable.

On the edge [vi,v j], the dynamics of the system are described by

(
Ai,z−Bi,zFi,zH−1

i,z −I
)(

xxx(k)
xxx(k +1)

)
= 0

Using Lemma 2.13, the difference is the Lyapunov function is negative, if there
exists M such that

M
(
Ai,z−Bi,zFi,zH−1

i,z −I
)
+(∗)+

(
−P−1

i, j,z 0
0 P−1

j,l,z+1

)
< 0

By choosing

M =
(

0
P−1

j,l,z+1

)

we have (
−P−1

i, j,z (∗)
P−1

j,l,z+1Ai,z−P−1
j,l,z+1Bi,zFi,zH−1

i,z −P−1
j,l,z+1

)
< 0

Congruence with (
HT

i,z 0
0 Pj,l,z+1

)

leads to ( −HT
i,zP

−1
i, j,zHi,z (∗)

Ai,zHi,z−Bi,zFi,z −Pj,l,z+1

)
< 0

and applying Proposition 5 we have

(−Hi,z−HT
i,z +Pi, j,z (∗)

Ai,zHi,z−Bi,zFi,z −Pj,l,z+1

)
< 0

The condition developed above can be formulated as follows.
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Theorem 6.3 The closed-loop system (6.9) is asymptotically stable if there exist ma-
trices Hi, j and symmetric positive definite matrices Pi, j,m = PT

i, j,m > 0, i, j = 1, 2, . . . , ns,
(vi,v j)∈ E , (v j,vl)∈ E , m,n = 1, 2, . . . , ri, o = 1, 2, . . . , r j so that Lemma 2.11 holds
with

Γi, j,l
m,n,o =

(−Hi,m−HT
i,m +Pi, j,m (∗)

Ai,nHi,m−Bi,nFi,m −Pj,l,o

)

Let us now consider (6.11). The difference in the Lyapunov function is

∆V = xxx(k +1)T H−T
j,z+1Pj,l,z+1H−1

j,z+1xxx(k +1)− xxx(k)T H−T
i,z Pi, j,zH−1

i,z xxx(k)

=
(

xxx(k)
xxx(k +1)

)T
(
−H−T

i,z Pi, j,zH−1
i,z 0

0 H−T
j,z+1Pj,l,z+1H−1

j,z+1

)(
xxx(k)

xxx(k +1)

)

where [vi,v j,vl] is an admissible path.
On the edge [vi,v j], similarly to the previous case, the dynamics of the system are

described by
(
Ai,z−Bi,zFi,zH−1

i,z −I
)(

xxx(k)
xxx(k +1)

)
= 0

Using Lemma 2.13, the difference is the Lyapunov function is negative, if there
exists M such that

M
(
Ai,z−Bi,zFi,zH−1

i,z −I
)
+(∗)+

(
−H−T

i,z Pi, j,zH−1
i,z 0

0 H−T
j,z+1Pj,l,z+1H−1

j,z+1

)
< 0

By choosing

M =
(

0
H−1

j,z+1

)

we have



−H−T
i,z Pi, j,zH−1

i,z (∗)

H−1
j,z+1Ai,z−H−1

j,z+1Bi,zFi,zH−1
i,z

(
−H−T

j,z+1 +(∗)+
H−T

j,z+1Pj,l,z+1H−1
j,z+1

)

 < 0

Congruence with (
HT

i,z 0
0 HT

j,z+1

)

leads to ( −Pi, j,z (∗)
Ai,zHi,z−Bi,zFi,z −H j,z+1−HT

j,z+1 +Pj,l,z+1

)
< 0

The condition developed above can be formulated as follows.
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Theorem 6.4 The closed-loop system (6.9) is asymptotically stable if there exist ma-
trices Hi, j and symmetric positive definite matrices Pi, j,m = PT

i, j,m > 0, i, j = 1, 2, . . . , ns,
(vi,v j) ∈ E , (v j,vl) ∈ E , m,n = 1, 2, . . . , ri, o = 1, 2, . . . , r j, so that Lemma 2.11
holds with

Γi, j,l
m,n,o =

( −Pi, j,m (∗)
Ai,mHi,n−Bi,mFi,n −H j,o−HT

j,o +Pj,l,o

)

6.2.2 Example and discussion

Let us discuss the previous conditions on an example.

Example 6.4 To illustrate the application of the conditions, consider a switching TS
system composed of three subsystems, each having two local models. The switching
graph is defined as G = {V ,E }, with V = {1, 2, 3} and
E = {(1,1), (1,2), (2,3), (3,1), (3,2)}. The edge (1,1) is introduced in order to
take into account that subsystem 1 can be active for several samples. The graph is
illustrated in Figure 6.3.

1 2

3

Figure 6.3: Graph representation of the switching system in Example 6.4.

The Lyapunov functions are defined for all the possible switches, i.e., we have
P1,1,z, P1,2,z, P2,3,z, etc. Consider the following local models of the switching TS
system above:

A1,1 =
(

0.60 −1.02
0.94 −0.07

)
B1,1 =

(
1
0

)

A1,2 =
(

0.08 −1.78
−1.77 −0.66

)
B1,2 =

(
1
0

)

A2,1 =
(

1.35 0.16
2.13 −1.70

)
B2,1 =

(
0
1

)

A2,2 =
(

0.27 −0.09
0.39 0.17

)
B2,2 =

(
0
1

)
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A3,1 =
(−1.83 0.81
−1.50 −0.23

)
B3,1 =

(
1
0

)

A3,2 =
(−1.63 −0.79
−0.31 0.69

)
B3,2 =

(
1
0

)

For this particular example, both Theorems 6.3 and 6.4 provide stabilizing control
laws. For instance, using Theorem 6.3 we obtain the gain matrices

H1,1 =
(

0.21 −0.01
0.00 0.32

)
F1,1 =

(
0.09 −0.40

)

H1,2 =
(

0.11 −0.08
−0.03 0.34

)
F1,2 =

(
0.05 −0.56

)

H2,1 =
(

0.05 0.04
0.04 0.33

)
F2,1 =

(
0.17 −0.15

)

H2,2 =
(

0.07 0.07
0.04 0.34

)
F2,2 =

(
0.14 0.04

)

H3,1 =
(

0.14 −0.11
−0.16 0.44

)
F3,1 =

(−0.40 0.51
)

H3,2 =
(

0.11 −0.21
−0.22 0.51

)
F3,2 =

(−0.30 0.67
)

A trajectory of the closed-loop system, with initial states xxx(0) =
(
1 1

)T is pre-
sented in Figure 6.4(a) while the corresponding control input is presented in Fig-
ure 6.4(b). The switching sequence was 112323123112323. The membership
functions used are the following ones:

h1,1(xxx) =
1
2
(1− sin(x1)) h1,2(xxx) = 1−h1,1(xxx)

h2,1(xxx) =
1
2
(1− cos(x1)) h2,2(xxx) = 1−h2,1(xxx)

h3,1(xxx) =
1
2
(1− e−x2

1) h3,2(xxx) = 1−h3,1(xxx)

¤

Although for the example above the conditions of both Theorems 6.3 and 6.4
are feasible, it has to be noted that in general, the two sets of conditions are not
equivalent.

By considering the switching possibilities in the Lyapunov matrix Pi, j,z, the devel-
oped conditions extend the case of using switching nonquadratic Lyapunov functions,
i.e., simply Lyapunov matrices of the form Pi,z, for the switching system. This can be
easily seen by inspecting the LMI conditions. Indeed, if there exists a solution using a
switching Lyapunov function, then the conditions of Theorem 6.3 or 6.4 are satisfied.
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(a) Closed-loop trajectory.
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Figure 6.4: Simulation results for Example 6.4.

However, the reverse is not true. For instance, for Example 6.4, the LMI conditions
corresponding to the use of a simple switching Lyapunov function in Theorem 6.4,
i.e., the conditions

2
r−1

Γi,i
m,n,o +Γi, j

m,n,o +Γ j,i
m,n,o < 0

i, j = 1, 2, . . . , ns, (vi,v j) ∈ E , m,n = 1, 2, . . . , ri, o = 1, 2, . . . , r j with

Γi, j
m,n,o =

( −Pi,m (∗)
Ai,mHi,n−Bi,mFi,n −H j,o−HT

j,o +Pj,o

)

are not feasible.
Recall that we assume that the switching sequence is not known in advance and

it is not assumed to be directly influenced. Naturally, this is the worst-case, i.e., all
possible combinations on switches between the subsystems are taken into account. If
the switching sequence can be chosen, or the goal is to find a stabilizing switching
sequence, the conditions can be relaxed. The LMI conditions can also be relaxed
by double sums in the Lyapunov function, e.g., using Pi, j,z,z instead of Pi, j,z, or even
several sums. Such relaxations are presented in the following section.

6.2.3 Extensions

By looking at the Lyapunov matrices, a straightforward extension of the results above
is by using the control law

uuu(k) =−Fi, j,zH−1
i, j,zxxx(k) (6.12)

i.e., instead of choosing a control law to be applied for each subsystem, the control is
applied based on the switching that takes place. Using the Lyapunov function (6.10)
and (6.11), respectively, the following results can be formulated. For the Lyapunov
function (6.10) we have
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Corollary 6.5 The switching TS system (6.1) is asymptotically stabilized by the switch-
ing control law (6.12) if there exist matrices Hi, j,m and symmetric positive defi-
nite matrices Pi, j,m = PT

i, j,m > 0, i, j = 1, 2, . . . , ns, (vi,v j) ∈ E , (v j,vl) ∈ E , m,n =
1, 2, . . . , ri, so that

(−Hi, j,z−HT
i, j,z +Pi, j,z (∗)

Ai,zHi, j,z−Bi,zFi, j,z −Pj,l,z+1

)
< 0

while when using the Lyapunov function (6.11) we obtain

Corollary 6.6 The switching TS system (6.1) is asymptotically stabilized by the switch-
ing control law (6.12) if there exist matrices Hi, j,m and symmetric positive defi-
nite matrices Pi, j,m = PT

i, j,m > 0, i, j = 1, 2, . . . , ns, (vi,v j) ∈ E , (v j,vl) ∈ E , m,n =
1, 2, . . . , ri, so that

( −Pi, j,z (∗)
Ai,zHi, j,z−Bi,zFi, j,z −H j,l,z+1 +(∗)+Pj,l,z+1

)
< 0

The proofs of the above corollaries follow the same lines as Theorems 6.3 and 6.4
and are therefore not repeated here. Similarly to the previous results, LMI conditions
can be formulated using Lemmas 2.10 or 2.11. Unfortunately, the main drawback of
this extension is that the switching sequence must be known in advance or directly
dependent on the input.

A different possibility to extend the results is the use of delayed controller and
delayed Lyapunov function (Lendek et al., 2012), as follows. Consider instead of the
control law (6.8) the following

uuu(k) =−Fi,z−1,zH−1
i,z−1,zxxx(k) (6.13)

which depends not only on the current, but also on the past states through the evalua-
tion of the scheduling variable at time k−1. To develop and relax the conditions, also
instead of the Lyapunov functions (6.10) and (6.11), the delayed Lyapunov functions

V = xxx(k)T P−1
i, j,z−1xxx(k) (6.14)

and
V = xxx(k)T H−T

i,z,z−1Pi, j,z,z−1H−1
i,z,z−1xxx(k) (6.15)

respectively, can be used, again defined during the switches. Then, based on the same
steps as described in the previous section, the following results can be stated. Using
the Lyapunov function (6.14), we have

Corollary 6.7 The switching TS system (6.1) is asymptotically stabilized by the switch-
ing control law (6.13) if there exist matrices Hi, j,m,n and symmetric positive definite
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matrices Pi, j,m,n = PT
i, j,m,n > 0, i, j = 1, 2, . . . , ns, (vi,v j) ∈ E , (v j,vl) ∈ E , m,n =

1, 2, . . . , ri, so that
(−Hi, j,z,z−1−HT

i, j,z,z−1 +Pi, j,z−1 (∗)
Ai,zHi, j,z,z−1−Bi,zFi, j,z,z−1 −Pj,l,z

)
< 0

When using the Lyapunov function (6.15) we obtain

Corollary 6.8 The switching TS system (6.1) is asymptotically stabilized by the switch-
ing control law (6.12) if there exist matrices Hi, j,m,n and symmetric positive definite
matrices Pi, j,m,n = PT

i, j,m,n > 0, i, j = 1, 2, . . . , ns, (vi,v j) ∈ E , (v j,vl) ∈ E , m,n =
1, 2, . . . , ri, so that

( −Pi, j,z,z−1 (∗)
Ai,zHi, j,z,z−1−Bi,zFi, j,z,z−1 −H j,l,z,z+1 +(∗)+Pj,l,z,z+1

)
< 0

Note that similarly to Corollaries 6.5 and 6.6, the two results above are not equiv-
alent. In order to further reduce the conservativeness of the results, the two extensions
above can also be combined, i.e., one may use the control law defined on switches
with delayed Lyapunov functions.

6.3 Stabilization by switching

In this section, we consider the problem of determining a switching law which stabi-
lizes a given switching system of the form

xxx(k +1) = A j,zxxx(k) (6.16)

While it is possible to also consider a control input, to illustrate the idea, we consider
the system (6.16). Since we do not have a control input, the only way to stabilize this
system is by a suitable choice of the switches.

The following assumptions are made:

1. a stable subsystem cannot be active for an infinite number of samples

2. the graph associated to the system is strongly connected: from any initial sub-
system there exists a path to any other subsystem

Let us discuss the assumptions above. Recall that our goal is to obtain conver-
gence of all the states to zero. Since there is no control input, we have to do this by
either keeping continuously active a subsystem that is stable or by switching between
the subsystems.

Assumption 1 is related to the existence of stable subsystems. If there exists
a stable subsystem that can be active for an infinite number of samples, the states
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converge to zero if this subsystem is kept active. If the initial condition implies a
different subsystem, stabilization is obtained by switching to the stable subsystem
and keeping it active. Thus, on the level of the whole switching system, the problem
can be reformulated as finding a path from each subsystem to this stable one. If
such a path exists, the problem is solved. However, if no stable subsystem can be
continuously active, a law that continuously switches between subsystems has to be
constructed to obtain convergence of the states to zero.

Assumption 2 is related to the fact that the switching law may not contain all
the subsystems. However, if the associated graph is strongly connected, meaning
that there exists a path from any subsystem to any other subsystem, it is possible to
switch from any initial subsystem to one that is contained in the switching law. The
case when Assumption 2 is not satisfied will be discussed later on.

6.3.1 Stabilizing switching law

Recall that we consider the associated directed graph G = {V ,E }, where the vertices
V = {v1, v2, . . . , vns} correspond to the subsystems, and each edge ei, j = (vi, v j)∈ E
corresponds to an admissible transition.

In what follows, we build a weight-adjacency matrix, that assigns to each admis-
sible transition, including self-transitions, a weight. By convention, if (vi, v j) /∈ E ,
for i 6= j, i, j = 1, 2, . . . , ns the corresponding weight wi, j = ∞, and if (vi, vi) /∈ E ,
i = 1, 2, . . . , ns, then the corresponding weight wi,i = 1. For all other edges, the
weight will be determined by the properties of the corresponding switch.

For this, consider the Lyapunov function

V (xxx(k)) = xxx(k)T Pi,zxxx(k) (6.17)

with Pi,z = PT
i,z > 0, for the ith subsystem, i = 1, 2, . . . , ns.

Using these Lyapunov functions our goal is to determine upper bounds on their
increase for each switch, i.e., finding constants δi, j > 0 so that V (xxx(k+1))≤ δi, jV (xxx(k))
for the transition (vi,v j).

For any (vi, v j) ∈ E we have

V (xxx(k +1))−δi, jV (xxx(k)) < 0

xxx(k +1)T Pj,z+1xxx(k +1)−δi, jxxx(k)T Pi,zxxx(k) < 0
(

xxx(k)
xxx(k +1)

)T (−δi, jPi,z 0
0 Pj,z+1

)(
xxx(k)

xxx(k +1)

)
< 0

At the same time, the system’s dynamics can be written as

(
Ai,z −I

)(
xxx(k)

xxx(k +1)

)
= 0
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Using Lemma 2.13, we have V (xxx(k +1))−δi, jV (xxx(k)) < 0 if there exists M so that

(−δi, jPi,z 0
0 Pj,z+1

)
+M

(
Ai,z −I

)
+(∗) < 0

Choosing M =
(

0
Mi, j,z

)
we obtain the sufficient conditions

(−δi, jPi,z (∗)
Mi, j,zAi,z −Mi, j,z−MT

i, j,z +Pj,z+1

)
< 0 (6.18)

To find all δi, j, one has to solve (6.18) for all (vi, v j) ∈ E .

Once all δi, j are available, define the weight matrix as W = [wi, j] with

wi, j =





δ pm
i −1

i,i if δi,i > 1

δ pM
i −1

i,i if δi,i < 1
δi, j if i 6= j

(6.19)

Then, the following result can be stated:

Theorem 6.9 The switching system (6.16) is asymptotically stabilizable by a switch-
ing law, if its associated graph G = {V ,E ,W } contains a subunitary cycle Cn. Fur-
thermore, for the ith initial subsystem, i = 1, 2, . . . , ns, the stabilizing switching law
is given by P(vi,v j)Cn, where vi denotes the vertex corresponding to the initial sub-
systems, P(vi,v j) is a path to vertex v j, with v j ∈ Cn.

Proof: Consider the switching system (6.16) and recall that the associated graph
description is G = {V ,E ,W }, where the vertices V = {v1, v2, . . . , vns} correspond to
the subsystems, each edge ei, j = (vi, v j) ∈ E corresponds to an admissible transition
between two subsystems, and the weight matrix W is the one constructed above.

Assume that there exists a subsunitary cycle, i.e., there exists Cn = {vc1, vc2, . . . ,
vcp, vc1} such that the product of the edges and nodes in this cycle is subunitary, and
let this product be denoted by δn. For any subsystem i such that vi ∈ Cn, we have
V (xxx(k + nc)) < δnV (xxx(k)), i.e., after a full cycle, the corresponding Lyapunov func-
tion increases at most δn times, with δn < 1. Consequently, the periodic switching
law Cn = [c1, c2, . . . , cp, c1] stabilizes the periodic system given by this cycle.

Let us now see the subsystems (if any) that are not in Cn. Since we assumed
that the G is strongly connected (Assumption 2), for all vi /∈ C , there exists a path
P(vi,v j) from the ith subsystem to a subsystem j on the cycle. Consider the switch-
ing law P(vi,v j)Cn, i.e., first a switching law that leads to the cycle and then the pe-
riodic switching law corresponding to the cycle. Since none of the subsystems have
a finite escape time, even though during the switches corresponding to P(vi,v j) the
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Lyapunov function might increase, during the periodic switching it will eventually
decrease and consequently stabilize the system. ¥

It should be noted that, if it exists, the periodic stabilizing law may not be unique.
Let us construct the weight matrix as W = [wi, j] with

wi, j =

{
δ qi

i,i if i = j
δi, j if i 6= j

with qi ∈ {pm
i −1, pm

i , . . . , pM
i −1}. If the associated graph G = {V ,E ,W } contains

a subunitary cycle Cn, then Cn will give a stabilizing periodic law. The proof is
similar to that of Theorem 6.9.

A quantifiable difference in the stabilizing switching laws consists in the guaran-
teed lowest upper bound on the convergence rate obtained. With the weight matrix
constructed as above, once the periodic law becomes active, the Lyapunov function
decreases in each cycle δn times, with

δn =
np

∏
k=1

wpk,pk ·
np−1

∏
k=1

wpk,pk+1

=
np

∏
k=1

δ
qvpk
vpk ,vpk

·
np−1

∏
k=1

δvpk ,vpk+1

where (vpk ,vpk+1) ∈ Cn. Since each element in the product is positive, the product is
minimized by choosing the minimal admissible qvpk

if δvpk ,vpk
> 1 and the maximal

admissible qvpk
if δvpk ,vpk

< 1. Thus, by choosing the weight matrix (6.19), we obtain
the periodic law with the lowest upper bound on the convergence rate.

It has to be noted that we use the one-sum Lyapunov function V = xxx(k)T Pi,zxxx(k)
for the easier notation and derivation. The conditions (6.18) can be easily derived
for the n-sum Lyapunov function V = xxx(k)T Pi,z . . .z︸︷︷︸

n

xxx(k) and using the n-sum matrix

Mi, j,z . . .z︸︷︷︸
n

, leading to (Megretski, 1996)




−δi, jPi,z . . .z︸︷︷︸
n

(∗)

Mi, j,z . . .z︸︷︷︸
n

Ai,z −Mi, j,z . . .z︸︷︷︸
n

−MT
i, j,z . . .z︸︷︷︸

n

+Pj,z+1 . . .z+1︸ ︷︷ ︸
n


 < 0

On the other hand, conditions to determine that there is no switching law that can
stabilize a given system can also be obtained. Consider the Lyapunov function (6.17)
and let us now find lower bounds on the increase of the Lyapunov function in one
sample, i.e., constants ωi, j > 0 so that V (xxx(k +1))≥ ωi, jV (xxx(k)), if the transition is
(vi,v j).
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For any (vi, v j) ∈ E we have

V (xxx(k +1))−ωi, jV (xxx(k)) > 0

xxx(k +1)T Pj,z+1xxx(k +1)−ωi, jxxx(k)T Pi,zxxx(k) > 0
(

xxx(k)
xxx(k +1)

)T (−ωi, jPi,z 0
0 Pj,z+1

)(
xxx(k)

xxx(k +1)

)
> 0

Combining it with the system’s dynamics and choosing M =
(

Mi, j,z

0

)
in Finsler’s

lemma, we obtain the conditions
(−Mi, j,zAi,z +(∗)+ωi, jPi,z Mi, j,z

(∗) Pj,z+1

)
> 0 (6.20)

Now, define the lower weight matrix as W = [wi, j] with

wi, j =





ω pm
i

i,i if ωi,i > 1

ω pM
i

i,i if ωi,i < 1
ωi, j if i 6= j

and the following result can be stated:

Corollary 6.10 The switching system (6.16) is not stabilizable by a switching law, if
all the cycles in the associated graph G = {V ,E ,W } are supraunitary.

6.3.2 Discussion and examples

The first issue that has to be noted is that due to the term δP, the conditions (6.18)
are BMIs. Although the solution will not be optimal, however, these BMIs can be
solved in several ways using two-step LMI conditions. A first possibility is

1. Solve (6.18) for all i = j, i.e., for each subsystem. In this case, the Pi,zs are
independent, and each condition can be formulated as a gevp problem. For this
step, we have the conditions

(−δi,iPi,z (∗)
Mi,i,zAi,z −Mi,i,z−MT

i,i,z +Pi,z+1

)
< 0

for which sufficient conditions can be formulated using e.g., Lemma 2.11, with

Γi,l
j,k =

(−δi,iPi, j (∗)
Mi,i, jAi,k −Mi,i, j−MT

i,i, j +Pi,l

)

for i = 1, 2, . . . , ns. For each subsystem, the gevp problem can be indepen-
dently solved. Note that in the expression above i denotes the index of the
subsystem and l corresponds to a different time instant.
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2. Once the Pi,zs are obtained, using them one can solve the conditions for differ-
ent subsystems, i.e,

(−δi, jPi,z (∗)
Mi, j,zAi,z −Mi, j,z−MT

i, j,z +Pj,z+1

)
< 0

with i, j = 1, 2, . . . , ns, i 6= j, for the decision variables δi, j and Mi, j,z. Sufficient
LMI conditions can again be formulated using e.g., Lemma 2.11.

Another possibility is solving all the conditions (6.18) first for the decision vari-
ables Pi,z and Mi, j,z, i, j = 1, 2, . . . , ns and afterward for δi, j and Mi, j,z i, j = 1, 2, . . . , ns,
minimizing at the same time δi, j. Alternatively, one can use a path-following algo-
rithm or available BMI solvers, such as penbmi (Kočvara and Stingl, 2008).

Since δi, j, i, j = 1, 2, . . . , ns, correspond to an upper bound on the increase or de-
crease of the Lyapunov function during a transition from the ith to the jth subsystem,
the conditions (6.18) always have a solution with large enough δi, j, i, j = 1, 2, . . . , ns.
A special case is when the transition is a self-transition, and the constant is subuni-
tary, i.e., δi,i < 1, in which case this constant corresponds to the decay-rate of the
subsystem. We do not require that δi, j, i, j = 1, 2, . . . , ns, are all sub-unitary. Indeed,
our goal is to find a subunitary cycle, for which it may be enough if there exists a
single δi, j < 1.

The problem of finding a subunitary cycle can be approached in two ways. On the
one hand, one can first solve the conditions (6.18) for the whole graph and find the
subunitary cycles. This can be done by using the logarithm of δi, j as weights in the
graph and employing the methods proposed e.g., in (Cherkassky and Goldberg, 1999;
Yamada and Kinoshita, 2002; Hanusa, 2009). On the other hand, one can generate
all elementary cycles in the graph, and solve independently the conditions (6.18) for
each cycle until a subunitary cycle is found. This approach will be illustrated in what
follows.

Example 6.5 Consider the switching system composed of four subsystems, with the
associated graph from Example 4.1, i.e.,

xxx(k +1) = Ai,zxxx(k)

for i = 1, 2, 3, 4, and with admissible switches (1,2), (2,1), (2,3), (3,1), (4,3),
(1,4). The graph can be defined as G = {V ,E }, with V = {1, 2, 3, 4} and E =
{(1,1), (1,2), (1,4), (2,1), (2,2), (2,3), (3,1), (3,3), (4,3), (4,4)}.
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The local matrices and membership functions are given as:

A1,1 =
(

0.5 0.2
0.85 0.2

)
A1,2 =

(
0.75 0.3
0.2 0.5

)

h1,1 =
1− sin(x1(k))

2
h1,2 = 1−h1,1

A2,1 =
(

1.3 0.6
−0.22 0.5

)
A2,2 =

(
0.5 −0.15
−0.8 0.8

)

h2,1 =
1− cos(x1(k))

2
h2,2 = 1−h2,1

A3,1 =
(

0.8 0.41
0.6 0.2

)
A3,2 =

(
0.06 0.81
0.35 0.1

)

h3,1 = 1− exp(−x2
1(k)) h3,2 = 1−h3,1

A4,1 =
(

0.45 0.4
0.8 0.4

)
A4,2 =

(
0.8 0.2
0.5 0.6

)

h4,1 =
1− tanh(x1(k))

2
h4,2 = 1−h4,1

where x1(k) denotes the first element of the state vector xxx at time k. Each subsystem
can be active for at least 2 and at most 5 samples, i.e., pm

i = 2 and pM
i = 5, i =

1, 2, 3, 4. Our goal is to find a switching law that can stabilize this system.
The first subsystem is stable. However, this subsystem can only be active for at

most 5 samples. The remaining subsystems are not stable: both local models of the
second subsystem, the first local model of the third and the second local model of the
fourth subsystem have eigenvalues larger than one.

Let us now inspect the associated graph of admissible switches. Although the
number of switches is quite large, there are only three elementary cycles: C1 =
[1, 2, 1], C2 = [1, 2, 3, 1], and C3 = [1, 4, 3, 1]. All the remaining cycles are equiv-
alent to one of these three. To ease the computations, we consider just the weights
for the three enumerated cycles. We solve the conditions (6.18) using the two-step
procedure explained above1, i.e., first solving the gevp problems associated to each
subsystem and then the interconnection LMIs. We obtain:

1. Cycle C1 = [1, 2, 1]:

δ =




0.8333 1.6743 × ×
2.0096 1.3564 × ×
× × × ×
× × × ×




1Similar results are obtained using penbmi (Kočvara and Stingl, 2008).
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The weight matrix2 is

W1 =




0.4822 1.6743 × ×
2.0096 1.3564 × ×
× × × ×
× × × ×




The weight of the cycle W (C1) = 2.20 > 1, consequently no conclusion can be
drawn.

2. Cycle C2 = [1, 2, 3, 1]:

δ =




0.8333 3.1171 × ×
× 1.3564 1.5379 ×

0.5840 × 1.1657 ×
× × × ×




The weight matrix is

W2 =




0.4822 3.1171 × ×
× 1.3564 1.5379 ×

0.5840 × 1.1657 ×
× × × ×




The weight of the cycle W (C2) = 2.13 > 1, consequently no conclusion can be
drawn.

3. Cycle C3 = [1, 4, 3, 1]:

δ =




0.8333 × × 6.0713
× 1.3564 × ×

0.3544 × 1.1657 ×
× × 0.6673 1.0643




The weight matrix is

W3 =




0.4822 × × 6.0713
× 1.3564 × ×

0.3544 × 1.1657 ×
× × 0.6673 1.0643




The weight of the cycle W (C3) = 0.8590 < 1, therefore we have the stabilizing
periodic law [1, 1, 1, 1, 1, 4, 4, 3, 3, 1, . . . ].

2× denotes an element that is not of interest for the particular case.
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The only subsystem that is not part of the periodic switching law that has been found
is subsystem 2. However, if this is the initial subsystem, it can be stabilized by
switching to any other subsystem (e.g., the first one) and then applying the peri-
odic law. Such a trajectory is illustrated in Figure 6.5(a). The initial states were
xxx0 = [−1010]T , the initially active subsystem the second, and the trajectory has been
obtained by first switching to the first subsystem and then applying the periodic law.
As can be seen, the states converge to zero. The switching law is illustrated in Fig-
ure 6.5(b), and the value of the Lyapunov function in Figure 6.5(c). Although the
value of the Lyapunov function increases for some switches, it decreases during a
cycle.

Note that the periodic laws [1, 1, 1, 1, 1, 4, 4, 4, 3, 3, 1, . . . ] and [1, 1, 1, 1, 1, 4, 4,
4, 4, 3, 3, 1, . . . ] also stabilize the system. However, in this case the weights of the
corresponding cycles are 0.9143 and 0.9731, respectively, thus, when applying one
of these laws, the states will converge slower to zero.

0 5 10 15 20 25 30
−10

−5

0

5

10

Samples

S
ta

te
s

 

 
x

1

x
2

(a) Closed-loop trajectory.

0 5 10 15 20 25 30
0

1

2

3

4

5

Samples

A
ct

iv
at

io
n 

la
w

(b) Switching law.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

x 10
7

Samples

V

(c) Value of the Lyapunov function

Figure 6.5: Simulation results for Example 6.5.
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Let us now return to the assumption that the graph associated to the switching
system should be strongly connected. Indeed, if this graph is strongly connected and
if there exists a subunitary cycle, then starting from any subsystem, the states can be
stabilized to zero. Let us assume now that the graph is not strongly connected. In this
case, the existence of a stabilizing switching law depends on the initial subsystem.
We illustrate this on an example.

Example 6.6 Consider a switching system composed of seven subsystems, with the
associated graph illustrated in Figure 6.6.
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Figure 6.6: Graph representation of the switching system in Example 6.6.

Let us assume that after solving the BMIs in (6.18), the associated weight matrix
is given by

W =




1 2 ∞ ∞ ∞ ∞ ∞
∞ 1 0.2 ∞ ∞ ∞ ∞

0.5 ∞ 1.5 2 ∞ ∞ ∞
∞ ∞ ∞ 1 ∞ ∞ 1.5
∞ ∞ ∞ 1 1.2 0.5 ∞
∞ ∞ ∞ ∞ 0.75 1.5 ∞
∞ ∞ ∞ 0.5 ∞ ∞ 1.5




where ∞ corresponds to an inadmissible switch. It can easily be seen from Figure 6.6
that there are two stable periodic switching laws: one involving subsystems 1, 2, and
3, with weight W1,2,3 = 1 ·2 ·1 ·0.2 ·1.5 ·0.5 = 0.3 and a second involving subsystems
5 and 6 with weight W5,6 = 1.2 ·0.5 ·1.5 ·0.75 = 0.675. Consequently, starting from
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subsystems 1, 2, 3, 5, or 6, the switching system can be stabilized, by choosing the
corresponding periodic switching law. Let us inspect now subsystems 4 and 7. From
these subsystems there are no paths to any other subsystems, and the weight of the
cycle W (C4,7) = 1.125 > 1, therefore no conclusion can be drawn. ¤

To summarize, our goal has been to stabilize a switching system, i.e., obtain
convergence of all the states to zero. The only instrument to do this – since there is
no control input – is by switching between the subsystems. We construct a periodic
switching law that stabilizes the system. This switching law may not contain all
the subsystems. If the subsystems are strongly connected, even if a subsystem is
not part of the switching law – such as subsystem 2 in Example 4.1, which is only
activated if it is the starting subsystem – there exists a path to switch to a subsystem
that is part of the switching law. If the graph is not strongly connected, we might not
be able to switch to a subsystem that is “on” the switching law, and therefore each
strongly connected subgraph has to be treated separately. Such a case is discussed
in Example 6.6: starting from subsystems 4 or 7, we cannot switch to a subsystem
contained in a stabilizing switching law and thus, for such initial conditions, the
system may not be stabilized.

To compare our results to recent ones from the literature, we adapt Example 1
from (Zhang et al., 2009).

Example 6.7 Consider the switching system with two linear discrete-time subsys-
tems with the system matrices (Zhang et al., 2009)

A1 =
(

2 0
0 2

)
A2 =

(
1.5 1
0 1.5

)

B1 =
(

1
2

)
B2 =

(
1
0

)

Since in the present approach we do not consider controller gain design, the control
gains have been designed separately and have the values

K1 =
(
0.1 1

)
K2 =

(
1.5 1

)

Thus, the closed-loop system matrices are (with a slight abuse of notation)

A1 =
(

1.9 −1
−0.2 0

)
A2 =

(
0 0
0 1.5

)

It can easily be verified that none of the matrices is Schur. However, by simply
switching between the subsystems, the states will converge to zero, thus a stabilizing
switching law is [1, 2, 1, 2, . . . ]. The state trajectories of the closed-loop system,
starting from xxx = [5, 5]T and using this switching law, are illustrated in Figures 6.7(a)
and 6.7(b).
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Figure 6.7: Simulation results for Example 6.7.

Let us now extend this system to a TS one, with local matrices

A1,1 =
(

1.9 −1
−0.2 0

)
A1,2 =

(
1.9 −.8
−0.2 0

)

A2,1 =
(

0 0
0 1.5

)
A2,2 =

(
0 0.5
0 1.5

)

Note that this system may represent a buck-boost power converter with uncertainty
in the inductance, which appears in many practical problems.

For this system, not being linear, the results in (Zhang et al., 2009) no longer
apply. However, following our approach, we have

δ =
(

4.02 0.27
0.27 2.25

)

and the weight of the cycle [1, 2, 1] is 4.02 · 0.27 · 2.25 · 0.27 = 0.65 < 1, thus a
stabilizing switching law is [1, 2, 1, 2, . . . ]. ¤

6.4 Conclusions

In this chapter we considered stabilization of periodic and switching systems. First,
we have developed conditions for the stabilization of periodic TS systems. We con-
sidered a periodic controller and the use of a periodic Lyapunov function, defined
in the points where the subsystems switch. Using the developed conditions, one is
able to design a controller for a system where the local models are not stable and not
controllable.

Second, we have considered stabilization of switching – not necessarily periodic
– TS systems. To develop the conditions, two switching Lyapunov functions have
been used, leading to two sets of conditions. Their application has been illustrated
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on numerical examples. Extensions of these conditions using delays in the Lyapunov
functions and the controller gains, in order to reduce their conservativeness, have also
been presented.

Finally, we have investigated stabilization of switching nonlinear systems by a
suitably chosen switching law. For this, first conditions that, when satisfied, guar-
antee that the system is stabilizable by switching law have been presented. For the
development of the conditions, a switching Lyapunov function has been employed.
If the conditions are satisfied, a switching law that stabilizes all the states to zero can
be constructed.

All the presented conditions and switching laws have been illustrated on numeri-
cal examples.

The developed conditions are still conservative and there are many ways to relax
them. For instance, one can use the nonquadratic Lyapunov functions and controller
gains presented in Chapter 3 or employ any relaxation scheme from the literature.
Another possible relaxation is the use of α-sample variation instead of a single one.
Moreover, extensions to robust and H∞ control are also possible. Furthermore, one
may also consider the case when both controller gains and a switching law need to
be designed, thus combining the results in Sections 6.2 and 6.3.





Chapter 7

Observer design

This chapter considers observer design of the periodic or switching system (4.3),
repeated here for convenience:

xxx(k +1) = A j,zxxx(k)+B j,zuuu(k)
yyy(k) = C j,zxxx(k)

(7.1)

We assume that the scheduling variables do not depend on the states that have to be
estimated, and consequently they can be used in the observer.

First, we present conditions for designing an observer for the periodic system (7.1).
Second, we show conditions for observer design such that the states of the switching
system (7.1) – when the switches are not periodic and they cannot be influences –
are asymptotically estimated. Finally, we present conditions for observer design un-
der the assumption that the switching law can also be chosen. In all the cases the
conditions are discussed and illustrated on numerical examples.

7.1 Observers for periodic systems

In this section, consider the observer design problem for the periodic TS model (7.1)
with ns subsystems, each subsystem j, j = 1, 2, . . . , ns, being active for p j time sam-
ples. The observer we use is of the form

xxx(k +1) = A j,zx̂xx(k)+B j,zuuu(k)+H−1
j,z L j,z(yyy− ŷyy)

ŷyy(k) = C j,zx̂xx(k)
(7.2)

that is also periodic, with the same periods as (7.1).
The estimation error is given by

eee(k +1) = (A j,z−H−1
j,z L j,zC j,z)eee(k) (7.3)

which is also a periodic system. The observer design conditions are equivalent to
finding H j,i and L j,i, j = 1, 2, . . . , ns, i = 1, 2, . . . , r j so that (7.3) is asymptotically
stable.

99
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7.1.1 Design conditions

First, we consider observer design such that (7.3) is asymptotically stable. The fol-
lowing results can be stated.

Theorem 7.1 The estimation error (7.3) is asymptotically stable, if there exist Pj,i =
PT

j,i > 0, H j,i, L j,i j = 1, 2, . . . , ns, i = 1, 2, . . . , r j, such that the following conditions
are satisfied:




−Pj,z (∗) . . . (∗) (∗)
Ω0,a Ω0,b . . . (∗) (∗)

...
...

...
...

...
0 0 . . . Ωp j+1,a Ωp j+1,b +Pj+1,z+p j+1


 < 0 (7.4)

where
Ωl,a = H j+1,z+lA j+1,z+l −L j+1,z+lC j+1,z+l

Ωl,b =−H j+1,z+l +(∗)
for l = 0, . . . , p j+1−1, where j denotes the modulo of j.

Remark: Note that j +1 is used because due to the periodicity the ns + ith sub-
system is in fact the ith one.

Proof: Consider the following switching Lyapunov function, similar to the one
used by Daafouz et al. (2002), but defined only in the instants when a switching takes
place in the error dynamics:

V = eee(k)T Pj,zeee(k)

for j = 1, 2, . . . , ns, if the active subsystem before the kth time instant was j.
The difference in the Lyapunov function is

V (eee(k + p j+1))−V (eee(k)) =

=
(

eee(k)
eee(k + p j+1)

)T (−Pj,z 0
0 Pj+1,z+p j+1

)(
eee(k)

eee(k + p j+1)

)

The error dynamics during the p j+1 samples are

ϒ j+1




eee(k)
eee(k +1)

...
eee(k + p j+1)


 = 0
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with

ϒ j+1 =




G j+1,0 −I . . . 0 0
0 G j+1,1 . . . 0 0
...

...
...

...
...

0 0 . . . G j+1,p j+1−1 −I




with G j+1,l = A j+1,z+l −H−1
j+1,z+lL j+1,z+lC j+1,z+l , l = 0, 1, . . . , p j+1−1.

Using Lemma 2.13, the difference in the Lyapunov function is negative definite,
if there exists M such that




−Pj,z 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . Pj+1,p j+1


+Mϒ j+1 +(∗) < 0

Choosing

M =




0 0 . . . 0
H j+1,z 0 . . . 0

0 H j+1,z+1 . . . 0
...

...
...

...
0 0 . . . H j+1,z+p j+1−1




leads directly to




−Pj,z (∗) . . . (∗) (∗)
Ω0,a Ω0,b . . . (∗) (∗)

...
...

...
...

...
0 0 . . . Ωp j+1,a Ωp j+1,b +Pj+1,z+p j+1


 < 0 (7.5)

with
Ωl,a = H j+1,z+lA j+1,z+l −L j+1,z+lC j+1,z+l

Ωl,b =−H j+1,z+l +(∗)

for l = 0, . . . , p j+1−1. ¥
To reduce the conservativeness, in what follows, we extend the result above using

an α-sample variation of the Lyapunov function. Then, the following conditions can
be stated:

Theorem 7.2 The periodic TS system (7.3) with periods p1, p2, . . . , pns is asymptot-
ically stable, if there exist Pji = PT

ji > 0, H ji, L ji, j = 1, 2, . . . , ns, i = 1, 2, . . . , r j,
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l = 1, 2, . . . , α , such that the following conditions are satisfied:



−Pj,z (∗) . . . (∗) (∗)
Ω j+1,0 Ω̄ j+1,0 . . . (∗) (∗)

...
...

...
...

...
0 0 . . . Ω j+α,p j+α−1 Ω̄ j+α,t−1 +Pj+α,z+t


 < 0 (7.6)

where t = ∑α
i=1 p j+i, and

Ω j+i,l = H j+i,z+lA j+i,z+l −L j+i,z+lC j+i,z+l

Ω̄ j+i,l =−H j+i,z+l +(∗)

for l = 0, . . . , t−1, i = 1, 2, . . . , α .

Proof: Similarly to Theorem 7.1, consider the switching Lyapunov function de-
fined only in the instants when a switching takes place in the error dynamics:

V = eee(k)T Pj,zeee(k)

for j = 1, 2, . . . , ns, if the active subsystem was j.
Since the Lyapunov function is only defined in the switching instants, the α-

difference in the Lyapunov function corresponds to α consecutive switches in the
system. Consequently, the α-difference in the Lyapunov function is

V (eee(k + t))−V (eee(k)) =

=
(

eee(k)
eee(k + t)

)T (−Pj,z 0
0 Pj+α,z+t

)(
eee(k)

eee(k + t)

)

where t = ∑α
i=1 p j+i.

The error dynamics during the t samples corresponding to the α switches in the
system are

Γ j+1: j+α




eee(k)
eee(k +1)

...
eee(k + t)


 = 0

with

Γ j+1: j+α =




G j+1,z −I . . . 0 0
0 G j+1,z+1 . . . 0 0
...

...
...

...
...

0 0 . . . G j+α,z+t−1 −I




with G j+i,z+l = A j+i,z+l−H−1
j+i,z+lL j+i,z+lC j+i,z+l , i = 1, 2, . . . , α , l = 1, 2, . . . , t−1.
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Using Lemma 2.13, the difference in the Lyapunov function is negative definite,
if there exists M such that




−Pj,z 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . Pj+1,z+t


+MΓ j+1: j+α +(∗) < 0

Choosing

M =




0 0 . . . 0
H j+1,z 0 . . . 0

0 H j+1,z+1 . . . 0
...

...
...

...
0 0 . . . H j+α,z+t−1




leads directly to (7.6). ¥

7.1.2 Discussion

First, let us discuss how exactly the conditions derived in Section 7.1.1 are applied.
For simplicity, consider a switching TS model consisting of two subsystems, and
without input, i.e., we have:

xxx(k +1) =

{
∑r1

i=1 h1i(zzz1(k))A1ixxx(k)

∑r2
i=1 h2i(zzz2(k))A2ixxx(k)

yyy(k) =

{
∑r1

i=1 h1i(zzz1(k))C1xxx(k)

∑r2
i=1 h2i(zzz2(k))C2xxx(k)

(7.7)

Assume that the period of the first subsystem is 2, and the period of the second
subsystem is 1, i.e., p1 = 2 and p2 = 1. The switching in the system and in the
Lyapunov function are depicted in Figure 7.1. As can be seen, the Lyapunov function
(with matrices P1 and P2) is defined only in the moments when there is a switching in
the system: from A1,z to A2,z or from A2z to A1z, respectively. A 1-sample variation of
the Lyapunov function corresponds to the difference between two consecutive values
of the Lyapunov function. A 2-sample variation corresponds to the difference after 2
samples of the Lyapunov function, etc.

For system (7.7), the conditions of Theorem 7.1 correspond to there exist Pj,i =
PT

j,i > 0, H j,i, L j,i, j = 1, 2, i = 1, 2, . . . , r j, so that the following conditions are satis-
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Figure 7.1: Switches in the system and in the Lyapunov function.

fied:
(−P1,z (∗)

Ω2,0 −H2,z +(∗)+P2,z+1

)
< 0



−P2,z (∗) (∗)
Ω1,0 −H1,z +(∗) (∗)

0 Ω1,1 −H1,z+1 +(∗)+P1,z+2


 < 0

(7.8)

with Ωi,l = Hi,z+lAi,z+l −Li,z+lCi,z+l , i = 1, 2, l = 0, 1. Relaxed LMI conditions can
be formulated using Lemmas 2.10 and 2.11, e.g.,

Corollary 7.3 The system (7.7) is asymptotically stable if there exist Pj,i = PT
j,i > 0,

H j,i, j, i = 1, 2, so that

Γ1
i1i2i3i4i5 +Γ1

i2i1i3i4i5 +Γ1
i1i2i4i3i5 +Γ1

i2i1i4i3i5 < 0

Γ2
i1i2i3 +Γ2

i2i1i3 < 0

i1, i2, i3, i4, i5 = 1, 2, i≤ j, m≤ n, where

Γ1
i1i2i3i4i5 =



−P2,i1 (∗) (∗)
Ω1,i1,i2 −H1,i1 +(∗) (∗)

0 Ω1,i3,i4 −H1,i3 +(∗)+P1,i5




Γ2
i1i2i3 =

(−P1,i1 (∗)
Ω2,i1,i2 −H2,i1 +(∗)+P2,i3

)

where Ωl+1,i1,i2 = Hl+1,i1Al+1,i2 −Ll+1,i1Cl+1,i2 , l = 1, 2, i1, i2 = 1, 2, . . . , rl .

Let us now consider a 2-sample variation of the Lyapunov function. The con-
ditions of Theorem 7.2 become there exist Pj,i = PT

j,i > 0, H j,i, L j,i, j, l = 1, 2, i =
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1, 2, . . . , r j, so that the following conditions are satisfied:



−P1,z (∗) (∗) (∗)
Ω2,0 Ω̄2,0 (∗) (∗)

0 Ω2,1 Ω̄2,1 (∗)
0 0 Ω1,2 Ω̄1,2 +P1,z+3


 < 0




−P2,z (∗) (∗) (∗)
Ω1,0 Ω̄1,0 (∗) (∗)

0 Ω1,1 Ω̄1,1 (∗)
0 0 Ω2,2 Ω̄2,2 +P2,z+3


 < 0

with Ωi,l = Hi,z+lAi,z+l −Li,z+lCi,z+l , Ω̄i,l =−Hi,z+l +(∗), i = 1, 2, l = 0, 1.
Similarly to the 1-sample variation, relaxed LMI conditions can easily be formu-

lated.
Note that the conditions do not require that the the local matrices of the TS system

are either stable or observable. We illustrate this on the following example.

Example 7.1 Consider the switching fuzzy system with two subsystems, each hav-
ing period 2, i.e., p1 = p2 = 2 as follows:

xxx(k +1) =

{
∑2

i=1 h1i(zzz1(k))A1ixxx(k)+Bu

∑2
i=1 h2i(zzz2(k))A2ixxx(k)+Bu

yyy(k) =

{
∑2

i=1 h1i(zzz1(k))C1xxx(k)

∑2
i=1 h2i(zzz2(k))C2xxx(k)

with

A11 =
(

0.80 0.22
−0.09 0.32

)
A12 =

(−0.82 −0.44
−1.25 0.33

)

A21 =
(

0.44 0.46
0.93 0.41

)
A22 =

(
0.84 0.20
0.52 0.67

)

C11 = C12 =
(
0 0

)
C21 = C22 =

(
1 0

)

B =
(
1 0

)T

The local models A11 and A12 are not observable, since the measurement matrices C11
and C12 are zero. Moreover, A12 is unstable, its eigenvalues being

(−1.1834 0.6934
)
.

The membership functions are as follows. h11 is randomly generated in [0, 1], h12 =
1−h11 and h21 = cos(x1)2, h22 = 1−h21.

A trajectory of the states of the switching system, for the initial state
(
1 1

)T and
a randomly generated input is illustrated in Figure 7.2(a).

Due to the unobservable and unstable local models, for this switching system
it is not possible to design an observer using either quadratic or nonquadratic Lya-
punov functions, that are common for both subsystems, as the LMIs available in the
literature for observer design are unfeasible.
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However, using the conditions of Theorem 7.1 we obtain a solution. The condi-
tions used are those in (7.6). Solving them using the relaxation of Wang et al. (1996),
we obtain

P11 =
(

0.55 −0.21
−0.21 0.54

)
P12 =

(
0.55 −0.22
−0.22 0.56

)

H11 =
(

0.74 −0.06
−0.14 0.65

)
H12 =

(
0.69 −0.21
−0.14 0.58

)

L11 =
(
0 0

)T L12 =
(
0 0

)T

P21 =
(

1.04 −0.08
−0.08 0.71

)
P22 =

(
1.17 −0.08
−0.08 0.76

)

H21 =
(

0.90 −0.16
0.03 0.76

)
H22 =

(
0.90 0.05
−0.17 0.73

)

L21 =
(
0.36 0.84

)
L22 =

(
0.87 0.40

)

A trajectory of the estimation error, with the estimated initial state being
(
0 0

)T

is presented in Figure 7.2(b). As expected, the error converges to zero. ¤

2 4 6 8 10 12 14
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

S
ta

te
s

(a) A trajectory of the states of the switching
system.
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(b) Estimation error using the designed ob-
server.

Figure 7.2: Simulation results for Example 7.1.

7.2 Observer design for switching systems

In what follows, we present conditions to design a switching observer such that the
estimation error dynamics converge to zero, with any admissible switching law. For
this, we use a switching nonquadratic Lyapunov function and make use of its varia-
tion over possible switches. We assume that although the exact switching sequence
is not known, the set of all the admissible switches is known. Furthermore, once a
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subsystem is activated, it will remain active for a number of samples, for which min-
imum and maximum bounds are known. Similarly to stability analysis and controller
design, we use a directed graph representation of the switching system (7.1).

7.2.1 Design conditions

The switching observer is of the form (7.2) and the error dynamics, under the as-
sumption that the scheduling variables are available online at sample k, are (repeated
here for convenience)

eee(k +1) = (A j,z−H−1
j,z L j,zC j,z)eee(k) (7.9)

which in itself is a switching system.
To derive the observer design conditions, meaning that the error dynamics (7.9)

should be asymptotically stable, consider the switching Lyapunov function

V = eee(k)T Pm, j,zeee(k) (7.10)

defined during the switches, i.e., on the edges of the associated graph G = {V ,E },
with (vm,v j) ∈ E . If a subsystem j may be active for several number of samples, the
edge (v j,v j) is also considered.

With this, the following result can be formulated:

Theorem 7.4 The error dynamics (7.9) is asymptotically stable, if there exist Pm, j,k =
PT

m, j,k > 0, H j,k, (vm,v j) ∈ E , (v j,vl) ∈ E , k = 1, 2, . . . , r, such that

( −Pm, j,z (∗)
H j,zA j,z−L j,zC j,z −H j,z−HT

j,z +Pj,l,z+1

)
< 0 (7.11)

for all admissible paths P(vm,vl) = [vm,v j,vl], vm ∈ V .

Proof: Consider the switching Lyapunov function (7.10), defined on the edges
of the associated graph, with eee(k)T Pm, j,zeee(k) being active during the transition from
vertex m to vertex j. The difference in the Lyapunov function for two consecutive
samples is

∆V = eee(k +1)T Pj,l,z+1eee(k +1)− eee(k)T Pm, j,zeee(k)

=
(

eee(k)
eee(k +1)

)T (−Pm, j,z 0
0 Pj,l,z+1

)(
eee(k)

eee(k +1)

)

where [vm,v j,vl] is an admissible path.
During the transition for j to l, the dynamics of the error system are described by

(
A j,z−H−1

j,z L j,zC j,z −I
)(

eee(k)
eee(k +1)

)
= 0
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Using Lemma 2.13, the difference in the Lyapunov function is negative, if there
exists M such that

(−Pm, j,z 0
0 Pj,l,z+1

)
+M

(
A j,z−H−1

j,z L j,zC j,z −I
)

+(∗) < 0

By choosing

M =
(

0
H j,z

)

we have directly (7.11). ¥
Using Lemma 2.11, sufficient LMI conditions can be formulated, as follows:

Corollary 7.5 The error dynamics (7.9) is asymptotically stable, if there exist Pm, j,k =
PT

m, j,k > 0, H j,k, (vm,v j) ∈ E , k, l = 1, 2, . . . , r, such that

Γm, j,l,γ
kk < 0
2

r−1
Γm, j,l,γ

kk +Γi, j,l,γ
kβ +Γi, j,l,γ

βk < 0

k,β ,γ = 1, 2, . . . , r

with

Γm, j,l,γ
kβ =

( −Pm, j,k (∗)
H j,kA j,β −L j,kC j,β −H j,k +(∗)+Pj,l,γ

)

for all admissible paths P(vm,vl) = [vm,v j,vl], v j ∈ V .

Remark: In order to reduce the conservativeness by exploiting the knowledge
available of the switching sequence, one can also use the observer

x̂xx(k +1) = A j,zx̂xx(k)+B j,zuuu(k)+H−1
m, j,zLm, j,z(yyy(k)− ŷyy(k))

ŷyy(k) = C j,zx̂xx(k)
(7.12)

for the j-th subsystem, if the last switch has been from vertex m to vertex j.
The error dynamics eee(k) = xxx(k)− x̂xx(k) using this observer can be written as

eee(k +1) = A j,zeee(k)−H−1
m, j,zLm, j,z(yyy(k)− ŷyy(k))

= (A j,z−H−1
m, j,zLm, j,zC j,z)eee(k)

(7.13)

Following the same steps as above, and in Finsler’s lemma choosing

M =
(

0
Hm, j,z

)

we have
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Corollary 7.6 The error dynamics (7.13) is asymptotically stable, if there exist Pm, j,k =
PT

m, j,k > 0, Hm, j,k, (vm,v j) ∈ E , (v j,vl) ∈ E , k = 1, 2, . . . , r, such that

( −Pm, j,z (∗)
Hm, j,zA j,z−Lm, j,zC j,z −Hm, j,z +(∗)+Pj,l,z+1

)
< 0 (7.14)

for all admissible paths P(vm,vl) = [vm,v j,vl], vm ∈ V .

The result above can be further extended to take into account more previous
switches. However, this comes with the added computational cost and will eventually
lead to considering all possible switching trajectories. To avoid this, but still reduce
the conservativeness of the approach, let us now consider the α-sample variation of
the Lyapunov function. Then, the following result can be formulated:

Theorem 7.7 The error dynamics (7.9) is asymptotically stable, if there exist α ∈
N+, Pi, j,k = PT

i, j,k > 0, H j,k, (vi,v j) ∈ E , k = 1, 2, . . . , r, such that




−Pv0,v1,z (∗) . . . (∗)
Ω1 −Hv1,z +(∗) . . . (∗)
0 Ω2 . . . (∗)
...

... . . . −Hvα ,z+α−1 +(∗)+Pvα ,vα+1,z+α


 < 0 (7.15)

for all admissible paths P(v0,vα+1)= [v0, v1, . . . , vα+1], where Ωi = Hvi,z+i−1Avi,z+i−1−
Lvi,z+i−1Cvi,z+i−1.

Proof: Consider the switching Lyapunov function (7.10), defined on the edges of
the associated graph, with Pvi,v j,z being active during the transition from vertex i to
vertex j. The difference in the Lyapunov function for α consecutive samples is

∆V = eee(k +α)T Pvα ,vα+1,z+αeee(k +α)− eee(k)T Pv0,v1,zeee(k)

=
(

eee(k)
eee(k +α)

)T (−Pv0,v1,z 0
0 Pvα ,vα+1,z+α

)(
eee(k)

eee(k +α)

)

where [v0,v1, . . . ,vα+1] is an admissible path.
Along the switching sequence [v0,v1, . . . ,vα+1], the error dynamics are described by




G1 −I 0 . . . 0
0 G2 −I . . . 0
...

...
...

...
0 0 0 . . . −I







eee(k)
eee(k +1)

...
eee(k +α)


 = 0

with Gi = Avi,z+i−1−H−1
vi,z+i−1Lvi,z+i−1Cvi,z+i−1.
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Following the same steps as in the proof of Theorem 7.4, using Lemma 2.13, the
difference is the Lyapunov function is negative, if there exists M such that




−Pv0,v1,z 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . Pvα ,vα+1,z+α


+M




G1 −I 0 . . . 0
0 G2 −I . . . 0
...

...
...

...
0 0 0 . . . −I


+(∗) < 0

with Gi defined as above.
By choosing

M =




0 0 . . . 0
Hv1,z 0 . . . 0

0 Hv2,z+1 . . . 0
...

... . . .
...

0 0 . . . Hvα ,z+α−1




we have directly (7.15). ¥

7.2.2 Example and discussion

Let us first illustrate the conditions of Theorem 7.4 on an example.

Example 7.2 Consider the switching system – actually a periodic switching system
– illustrated in Figure 7.3. Assuming that none of the subsystems may be active

1 2

3

Figure 7.3: Periodic switching system for Example 7.2.

for more than one sample, i.e., pm = pM = 1, the graph is G = {V ,E }, with V =
{1, 2, 3} and E = {(1,2), (2,3), (3,1)}. Consider the following local models of the
TS system above:

A1,1 =
(

0.61 0.10
1.82 0.50

)
A1,2 =

(
0.21 1.59
0.34 0.77

)

C1,1 =
(
1 0

)
C1,2 =

(
1 0

)
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A2,1 = A2,2 =
(

1.1 0
0.2 0.8

)

C2,1 =
(
0 0

)
C2,2 =

(
0 0

)

A3,1 =
(

0.11 0.09
0.09 0.07

)
A3,2 =

(
0.32 0.30
0.09 0.38

)

C3,1 =
(
0 1

)
C3,2 =

(
0 0

)

The second subsystem is linear, but it is unstable and unobservable. The second local
model of the third subsystem is again unstable and unobservable. Due to this, meth-
ods available in the literature yield unfeasible LMIs. However, using Lemma 2.10 to
formulate LMI conditions for Theorem 7.4, we obtain

P1,2,1 =
(

4.69 −3.97
−3.97 7.79

)
P1,2,2 =

(
4.69 −3.97
−3.97 7.79

)

P2,3,1 =
(

3.45 −3.35
−3.35 5.05

)
P2,3,2 =

(
4.09 −3.91
−3.91 6.41

)

P3,1,1 =
(

3.48 −3.97
−3.97 5.18

)
P3,1,2 =

(
4.74 −5.67
−5.67 7.39

)

H1,1 =
(

4.83 −2.45
−2.50 6.26

)
H1,2 =

(
3.77 −3.21
−1.84 6.46

)

H2,1 =
(

3.57 −3.21
−2.54 5.35

)
H2,2 =

(
3.57 −3.21
−2.54 5.35

)

H3,1 =
(

4.55 −5.05
0.45 5.84

)
H3,2 =

(
4.14 −4.61
−4.85 6.27

)

L1,1 =
(−2.14

12.08

)
L1,2 =

(
2.40
3.45

)

L3,1 =
(

2.42
4.27

)
L3,2 =

(
3.89
7.93

)

Note that there are no observer gains L2,1 and L2,2. This is because the second sub-
system on its own is not observable. However, this observer is able to estimate the
states of the switching system above. A trajectory of the error dynamics for the case
when xxx(0) = [−1,1]T and x̂xx(0) = 0 is illustrated in Figure 7.4. For the simulation,
the membership functions used were h1 = 1

2(1− sinx1), h2 = 1−h1, and for L2,1 and
L2,2 zero matrices were used. The initial subsystem was the first one, from which the
system switched according to the periodic law. ¤

Let us now discuss the conditions developed for the α-sample variation of the
Lyapunov function. In the example above, the conditions required that the Lyapunov
function decreases with every switch/every sample, i.e., for all (vi,v j) ∈ E . That is,
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Figure 7.4: Estimation error for Example 7.2.

we had the conditions:
( −P1,2,z (∗)

H2,zA2,z−L2,zC2,z −H2,z +(∗)+P2,3,z+1

)
< 0

( −P2,3,z (∗)
H3,zA3,z−L3,zC3,z −H3,z +(∗)+P3,1,z+1

)
< 0

( −P3,1,z (∗)
H1,zA1,z−L1,zC1,z −H1,z +(∗)+P1,2,z+1

)
< 0

On the other hand, a 2-sample variation means that the Lyapunov function has to
decrease along paths of length 2, i.e., we have the conditions:




−P1,2,z (∗) (∗)(
H2,zA2,z
−L2,zC2,z

)
−H2,z +(∗) (∗)

0
(

H3,z+1A3,z+1
−L3,z+1C3,z+1

) (−H3,z+1 +(∗)
+P3,1,z+2

)




< 0




−P2,3,z (∗) (∗)(
H3,zA3,z
−L3,zC3,z

)
−H3,z +(∗) (∗)

0
(

H1,z+1A1,z+1
−L1,z+1C1,z+1

) (−H1,z+1 +(∗)
+P1,2,z+2

)




< 0




−P3,1,z (∗) (∗)(
H1,zA1,z
−L1,zC1,z

)
−H1,z +(∗) (∗)

0
(

H2,z+1A2,z+1
−L2,z+1C2,z+1

) (−H2,z+1 +(∗)
+P2,3,z+2

)




< 0

Furthermore, a 3-sample variation means that the Lyapunov function has to de-
crease along paths of length 3, which, in this case, is equivalent to the whole period
of switching.
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In the example above, one of the reasons for which the LMIs are feasible is that
the subsystems may be active for a finite number of samples. In the case considered
above, the switching occurs at every sample, i.e., each subsystem is active for one
sample. Feasible LMIs are also obtained if the subsystems may be active for at most 2
samples. However, assuming that each subsystem, once activated may remain active
for an infinite number of samples, the corresponding LMIs become unfeasible.

Let us now consider a more complex example.

Example 7.3 Consider a TS system with three subsystems, each having two local
models, as follows:

A1,1 =
(

0.73 0.52
0.66 0.74

)
A1,2 =

(
0.28 0.27
1.50 1.38

)

C1,1 =
(
1 0

)
C1,2 =

(
1 0

)

A2,1 =
(

1.05 0
0.5 0.1

)
A2,2 = A2,1

C2,1 =
(
0 0

)
C2,2 = C2,1

A3,1 =
(

0.86 0.72
0.23 0.76

)
A3,2 =

(
0.25 1.51
1.94 1.83

)

C3,1 =
(
1 0

)
C3,2 =

(
0 0

)

Subsystem 1 may be active for at most 5 samples, while subsystems 2 and 3
are active only for 1 sample, i.e., pm

1 = 1, pM
1 = 5, pm

2 = pM
2 = pm

3 = pM
3 = 1. The

possible switches are presented in Figure 7.5. All the local models are unstable. Next
to this, the second subsystem and the second local model of the third subsystem are
unobservable.

Due to the unobservable and unstable local models, neither the conditions devel-
oped using a common quadratic Lyapunov function, nor those based on a common
nonquadratic Lyapunov functions are feasible.

Using the conditions of Theorem 7.4, with a common quadratic Lyapunov func-
tion, we obtain the gains

H1,1 =
(

0.70 −0.30
−0.08 0.29

)
H1,2 =

(
0.90 −0.16
−0.33 0.19

)

H2,1 =
(

0.58 −0.35
−0.10 0.51

)
H2,2 = H2,1

H3,1 =
(

0.58 −0.39
0.05 0.37

)
H3,2 =

(
0.61 −0.37
−0.37 0.24

)

L1,1 =
(

0.52
0.37

)
L1,2 =

(
0.01
0.47

)

L3,1 =
(

0.28
0.37

)
L3,2 =

(
0.25
0.85

)
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Since the second subsystem is not observable, there are no gains L2,1 and L2,2.
Trajectories of the states and the error are presented in Figures 7.6(a) and 7.6(b). The
true initial states were xxx0 = [−1, 1]T and the estimated initial states were xxx0 = 0. The
corresponding switching law is given in Figure 7.6(c). For testing, the membership
functions are assumed to depend on an exogenous measured signal, with h1 being
presented in Figure 7.6(d). � ��

Figure 7.5: Graph representation of the switching system in Example 7.3.

Using the conditions developed with a nonquadratic Lyapunov function for the
subsystems, but taking into account the possible switches (notably that subsystems 2
and 3 are active only for one sample), we obtain the gains

H1,1 =
(

0.66 −0.30
−0.09 0.31

)
H1,2 =

(
0.95 −0.16
−0.36 0.20

)

H2,1 =
(

0.58 −0.36
−0.01 0.36

)
H2,2 = H2,1

H3,1 =
(

0.59 −0.41
0.06 0.35

)
H3,2 =

(
0.65 −0.39
−0.38 0.25

)

L1,1 =
(

0.47
0.42

)
L1,2 =

(
0.08
0.5

)

L3,1 =
(

0.28
0.37

)
L3,2 =

(
0.23
0.83

)

which are quite close to those obtained by Theorem 7.4. It should be noted that with-
out taking into account that subsystems 2 and 3 are active only for one sample, the
conditions using a nonquadratic Lyapunov function for each subsystem are unfeasi-
ble. ¤

We assumed that the switching sequence is not known in advance and it cannot
be directly influenced. Due to this assumption the conditions require that the esti-
mation error dynamics is stable if the Lyapunov function decreases along every path
of length α . This is the worst-case assumption, i.e., all possible combinations on



7.3. OBSERVER DESIGN WITH CONTROLLED SWITCHES 115

0 5 10 15
−1

−0.5

0

0.5

1

Sample

S
ta

te
s

(a) A trajectory of the switching system.

0 5 10 15 20
−1

0

1

2

3

4

Sample

E
st

im
at

io
n 

er
ro

r

(b) The trajectory of the error.
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(c) The switching law used.
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Figure 7.6: Simulation results for Example 7.3.

switches between the estimation error subsystems have to be taken into account. If
the switching sequence can be chosen, or it is known in advance, the conditions can
be relaxed.

7.3 Observer design with controlled switches

Finally, let us consider the case when an observer has to be designed while the
switches may be chosen. Therefore, our goal is to “stabilize” the error dynamics
by suitably designed observer gains and by switching among the subsystems. The
switching observer considered,

x̂xx(k +1) = A j,zx̂xx(k)+B j,zuuu(k)+H−1
j,z L j,z(yyy(k)− ŷyy(k))

ŷyy(k) = C j,zx̂xx(k)
(7.16)

is the same as before, but next to the matrices H−1
j,i , L j,i, j = 1, 2 . . . , ns, i = 1, 2, . . . , r,

the switching sequence also has to be determined.
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The error dynamics is again

eee(k +1) = (A j,z−H−1
j,z L j,zC j,z)eee(k) (7.17)

Since the switching sequence can be chosen, if there exists a subsystem with an
asymptotically stable error dynamics that can be active for an infinite number of sam-
ples, the problem can be reformulated as finding a path – a classical graph theoretical
problem – from each subsystem to this stable subsystem. If such a path exists then
the switching law is given by this path, and the problem is solved. Therefore, we
consider the case when none of the subsystems may be infinitely active. Next to this,
for the easier development of the conditions, we assume that the associated graph is
strongly connected, i.e., there exists a path between any two vertices.

Recall that we consider the associated directed graph G = {V ,E }, where the
vertices V = {v1, v2, . . . , vns} correspond to the subsystems, and each edge ei, j =
(vi, v j) ∈ E corresponds to an admissible transition.

Similarly to the controller design case, we build a weight-adjacency matrix, that
assigns to each admissible transition, including self-transitions, a weight. By conven-
tion, if (vi, v j) /∈ E , for i 6= j, i, j = 1, 2, . . . , ns the corresponding weight wi, j = ∞,
and if (vi, vi) /∈ E , i = 1, 2, . . . , ns, then the corresponding weight wi,i = 1. For all
other edges, the corresponding weight will be given by an upper bound on the in-
crease of a Lyapunov function associated to the error dynamics.

Consider the Lyapunov function

V = eee(k)T Pi,zeee(k)

with Pi,z = PT
i,z > 0, for the ith subsystem, i = 1, 2, . . . , ns.

Before constructing the weighting matrix, let us find constants δi, j > 0 so that
V (eee(k + 1)) ≤ δi, jV (eee(k)), if the transition is (vi,v j), i.e., upper bounds on the in-
crease of the Lyapunov function in one sample.

For any (vi, v j) ∈ E we have

V (eee(k +1))−δi, jV (eee(k)) < 0

eee(k +1)T Pj,z+1eee(k +1)−δi, jeee(k)T Pi,zeee(k) < 0
(

eee(k)
eee(k +1)

)T (−δi, jPi,z 0
0 Pj,z+1

)(
eee(k)

eee(k +1)

)
< 0

At the same time, the system’s dynamics can be written as

(
Ai,z−H−1

i,z Li,zCi,z −I
)(

eee(k)
eee(k +1)

)
= 0

Using Lemma 2.13, we have V (eee(k +1))−δi, jV (eee(k)) < 0 if there exists M so that
(−δi, jPi,z 0

0 Pj,z+1

)
+M

(
Ai,z−H−1

i,z Li,zCi,z −I
)
+(∗) < 0
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Choosing M =
(

0
Hi, j,z

)
we obtain the sufficient conditions

( −δi, jPi,z (∗)
Hi, j,zAi,z−Li,zCi,z −Hi, j,z−HT

i, j,z +Pj,z+1

)
< 0 (7.18)

To find all δi, j, one has to solve (7.18) for all (vi, v j) ∈ E .
Now, define the weight matrix as W = [wi, j] with

wi, j =





δ pm
i −1

i,i if δi,i > 1

δ pM
i −1

i,i if δi,i < 1
δi, j if i 6= j

Further on, we follow the same reasoning as in Section 6.3. Assume that in
the weight matrix constructed above there exists a subunitary cycle, i.e., there exists
Cn = {vc1, vc2, . . . , vcp, vc1} such that the product of the edges and nodes in this
cycle is subunitary, and let this product be denoted by δn. For any subsystem i such
that vi ∈ Cn, we have V (eeek+nc) < δnV (eee(k)), i.e., after a full cycle, the corresponding
Lyapunov function increases at most δn times, with δn < 1. Consequently, the pe-
riodic switching law Cn = [c1, c2, . . . , cp, c1] stabilizes the periodic error dynamics
given by this cycle.

Let us now see the subsystems (if any) that are not in Cn. Since we assumed
that G is strongly connected, for all vi /∈ C , there exists a path P(vi,v j) from the ith
subsystem to a subsystem j on the cycle. Consider the switching law P(vi,v j)Cn,
i.e., first a switching law that leads to the cycle and then the periodic switching law
corresponding to the cycle. Although during the switches corresponding to P(vi,v j)
the Lyapunov function might increase, during the periodic switching it will eventually
decrease and converge to zero.

Based on the explanation above, the following result can be stated:

Theorem 7.8 The error dynamics (7.17) are asymptotically stable along a switching
law, if its associated graph G = {V ,E ,W } contains a subunitary cycle Cn. Further-
more, for the ith initial subsystem, i = 1, 2, . . . , ns, the switching law that stabilizes
the error dynamics is given by P(vi,v j)Cn, where vi denotes the vertex correspond-
ing to the initial subsystems, and P(vi,v j) is a path to vertex v j, with v j ∈ Cn.

Similarly to Section 6.3, if the graph is not strongly connected, the possibility
of developing an observer depends on the starting subsystem. Therefore, in order to
design an observer, each strongly connected subgraph has to be analyzed.

7.4 Conclusions

In this chapter we considered observer design for switching nonlinear systems rep-
resented by TS fuzzy models. We have presented conditions that, when satisfied,
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guarantee that the estimation error converges to zero. The conditions were derived
by taking into account the number of samples a subsystem may be active and the
possible switches in the system.

We have considered three cases. The first case is when the switching is periodic.
Second, we considered general switching systems, where the switching sequence is
not known in advance and it cannot be directly influenced. Due to this assumption the
conditions require that the estimation error dynamics decreases along the trajectory of
the subsystems and the switches. This is the worst-case assumption, i.e., all possible
combinations on switches between the estimation error subsystems have to be taken
into account. Finally, we considered the case that next to designing the observer
gains, the switching sequence can be chosen.

The developed conditions have been formulated as LMIs and extended to the
α-sample variation of the Lyapunov function, in order to reduce their conservative-
ness. Other possibilities to relax the conditions represents the usage of double sums
in the Lyapunov function, or using delayed Lyapunov functions or controllers and
observers.

A shortcoming of the conditions is the computational complexity required to gen-
erate the possible combinations of switches and subsystems. In particular for large-
scale switching systems, when considering α-sample variation, the number of condi-
tions may be exponential in the number of subsystems, and in consequence, a large
number of LMIs that has to be solved. However, reducing the conservativeness of the
conditions by introducing additional sums in the Lyapunov function also increases
the number of LMIs.
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Pasamontes, M., Álvarez, J., Guzmán, J., Lemos, J., and Berenguel, M. (2011). A
switching control strategy applied to a solar collector field. Control Engineering
Practice, 19(2):135–145.

Stepan, G. and Insperger, T. (2006). Stability of time-periodic and delayed systems –
a route to act and wait control. Annual Reviews in Control, 30:159–168.

Tanaka, K., Iwasaki, M., and Wang, H. O. (2001). Switching control of an R/C
hovercraft: stabilization and smooth switching. IEEE Transactions on Systems,
Man and Cybernetics, Part B, 31(6):853–863.

Theron, A., Farges, C., Peaucelle, D., and Arzelier, D. (2007). Periodic H2 synthe-
sis for spacecraft in elliptical orbits with atmospheric drag and perturbations. In
Proceedings of American Control Conference, New York, USA.



BIBLIOGRAPHY 123

Venkataramanan, V., Chen, B. M., Lee, T. H., and Guo, G. (2002). A new approach
to the design of mode switching control in hard disk drive servo systems. Control
Engineering Practice, 10(9):925–939.

Wang, H., Tanaka, K., and Griffin, M. (1996). An approach to fuzzy control of non-
linear systems: stability and design issues. IEEE Transactions on Fuzzy Systems,
4(1):14–23.

Widyotriatmo, A. and Hong, K.-S. (2012). Switching algorithm for robust configura-
tion control of a wheeled vehicle. Control Engineering Practice, 20(3):315–325.

Yamada, T. and Kinoshita, H. (2002). Finding all the negative cycles in a directed
graph. Discrete Applied Mathematics, 118:279–291.

Yongqiang Guan and, Z. J., Zhang, L., and Wang, L. (2013). Decentralized stabi-
lizability of multi-agent systems under fixed and switching topologies. Systems &
Control Letters, 62:438–446.

Zhang, W., Abate, A., Hua, J., and Vitus, M. P. (2009). Exponential stabilization of
discrete-time switched linear systems. Automatica, 45(11):2526–2536.

Zhao, J. and Spong, M. (2001). Hybrid control for global stabilization of the cart-
pendulum system. Automatica, 37(12):1941–1951.

Zwart, H., van Mourik, S., and Keesman, K. (2010). Switching control for a class
of non-linear systems with an application to post-harvest food storage. European
Journal of Control, 16(5):567–573.





Part III

Local analysis and synthesis

125





Chapter 8

Introduction and outline

8.1 Introduction

In this part, we consider the problem of analyzing local stability and developing local
controller and observer design methods for discrete-time TS models while estimating
a domain of attraction of the equilibrium point.

In the continuous-time case, the main inconvenient in the fuzzy Lyapunov func-
tion approach is that differentiating the Lyapunov function means differentiating the
membership functions. Deriving tractable conditions while linking these derivatives
to the system states is challenging. In (Tanaka et al., 2003), the proposed solution is
to assume known upper bounds on the time derivative of the membership functions.
First, this assumption induces local results: they are valid on the validity domain of
the bounding assumption and a key point is then to enlarge this domain (Lee and Joo,
2014). Second, these upper bounds are far from being trivial to compute.

In the discrete time case, solutions are generally global. Since the time derivative
of the Lyapunov candidate is no longer needed, non-quadratic Lyapunov functions
have been introduced (Guerra and Vermeiren, 2004; Ding et al., 2006; Dong and
Yang, 2009; Lee et al., 2011) for developing global stability and design conditions.
More recently, by using Polya’s theorem (Montagner et al., 2007; Sala and Ariño,
2007) asymptotically necessary and sufficient (ANS) LMI conditions have been ob-
tained for stability in the sense of a chosen quadratic or nonquadratic Lyapunov
function. Ding (2010) gave ANS stability conditions for both membership function-
dependent model and membership function-dependent Lyapunov matrix. By increas-
ing the complexity of the homogeneously polynomially parameter-dependent Lya-
punov functions, in theory any sufficiently smooth Lyapunov function can be approx-
imated. Unfortunately, the number of LMIs that have to be solved increase quickly,
leading to numerical intractability (Zou and Yu, 2014). For all these results, if the de-
veloped conditions are feasible, then stability of the corresponding system is ensured
globally – actually in the largest Lyapunov level set included in the domain where
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the TS model is defined. However, it is possible that stability (of the closed-loop
system or error dynamics, as might be the case) cannot be ensured on the full domain
where the TS model is defined, but by reducing this domain, the conditions become
feasible (Pitarch et al., 2011).

For many nonlinear systems, only local stability of an equilibrium point can be
established. This part addresses local stability analysis and design for discrete time
TS models. In the literature few results exist on this specific topic. Some works
deal with linear discrete systems with actuator and/or state saturations (da Silva and
Tarbouriech, 2001, 2006), where the stability analysis is performed using quadratic
Lyapunov functions while trying to find the maximum admissible quadratic domain
of attraction. Others, considering the same problem of actuator saturation still us-
ing quadratic Lyapunov functions, proposed ways to design the domain of attraction
based on convex set as polyhedrons (Hu et al., 2001) or as being saturation depen-
dent (Cao and Lin, 2003), leading to slightly non-quadratic sets.

A quadratic domain of attraction can be restrictive compared to the true domain
of attraction. Lee et al. (2013), developed a stability/stabilization approach to im-
prove the construction of the domain of attraction. They developed a strategy for the
stabilization of TS models using non-quadratic Lyapunov functions and an iterative
procedure to maximize the domain of attraction. In (Lee and Joo, 2014), the main
improvement remains in the use of homogeneous polynomial parameter-dependent
matrices in the Lyapunov function as well as in the controller, which allow obtaining
better results with a larger domain of attraction compared to (Lee et al., 2013). The
first approach in (Lee et al., 2013) requires the knowledge of some a priori bounds on
the variation of the membership functions over time, while in (Lee and Joo, 2014) the
bounds on the derivative of the membership function with respect to the scheduling
variables are introduced in the stability conditions. This procedure is complex and
can be computationally expensive, especially for practical implementation.

The idea proposed in our work is to combine the advantageous tools existing
in the discrete TS framework with the determination of a non-quadratic domain of
attraction using an easy procedure requiring only the knowledge of the membership
functions. The main interest is to ensure local asymptotic stability especially when
no global one exists and allowing some good performances by proposing a way to
construct and maximize the domain of attraction in a simple manner.

The material in this part is based on the following publications:

(P12) Zs. Lendek, Z. Nagy, J. Lauber, Local stabilization of discrete-time TS de-
scriptor systems. Engineering Applications of Artificial Intelligence, vol. 67,
pages 409-418, 2018.

(P13) B. Marx, Zs. Lendek, Local observer design for discrete-time TS systems. In
Preprints of the 2017 IFAC World Congress, pages 873-878, Toulouse, France,
July 2017.
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(P14) Zs. Lendek, J. Lauber, Local stability of discrete-time TS fuzzy systems. In
Proceedings of the 4th IFAC International Conference on Intelligent Control
and Automation Sciences , pages 7-12, Reims, France, June 2016.

(P15) Zs. Lendek, J. Lauber, Local quadratic and nonquadratic stabilization of discrete-
time TS fuzzy systems. In Proceedings of the 2016 IEEE World Congress on
Computational Intelligence, pages 2182-2187, Vancouver, Canada, July 2016.

8.2 A motivating example

To motivate the research presented in this part, consider the following example.

Example 8.1 Consider the nonlinear system:

x1(k +1) = x2
1(k)

x2(k +1) = x1(k)+0.5x2(k)
(8.1)

with x1(k)∈ [−a, a], a > 0 being a parameter. It can be easily seen that (8.1) is locally
stable for x1 ∈ (−1, 1).

The nonlinearity is x2
1 and using the sector nonlinearity approach (Ohtake et al.,

2001) on the domain x1(k) ∈ [−a, a], the resulting TS model is

xxx(k +1) = h1(x1(k))A1xxx+h2(x1(k))A2xxx

with h1(x1) = a−x1(k)
2a , h2(x1(k)) = 1−h1(x1(k)), A1 =

(−a 0
1 0.5

)
, A2 =

(
a 0
1 0.5

)
.

If a < 1, e.g., a = 0.9, the stability of the TS model can be easily proven e.g.,
using a common quadratic Lyapunov function.

If the sector nonlinearity approach is applied for a > 1, without including further
conditions, no conclusion can be drawn regarding the stability of the TS model. A
condition that leads to the feasibility of the associated LMI problem and thus makes
it possible to draw some conclusion of local stability is e.g., x2

1(k + 1) ≤ 0.9x2
1(k).

However, the question on how to obtain such a condition and its exact interpretation
remains open.

¤

8.3 Notation

In this part we develop sufficient conditions for the local stability, local controller
and local observer design of nonlinear discrete-time systems represented by Takagi-
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Sugeno (TS) fuzzy models. For analysis we consider systems of the form

xxx(k +1) =
r

∑
i=1

hi(zzz(k))Aixxx(k)

= Azxxx(k)
(8.2)

For local stabilization, the systems considered are of the form

xxx(k +1) =
r

∑
i=1

hi(zzzi(k))(Aixxx(k)+Biuuu(k))

= Azxxx(k)+Bzuuu(k)
(8.3)

and for observer design

xxx(k +1) = Azxxx(k)+Bzuuu(k)
yyy(k) = Czxxx(k)

(8.4)

In the above equations, xxx denotes the state vector, uuu is the input vector, r is the
number of rules, zzz is the scheduling vector, hi, i = 1, 2, . . . , r are normalized mem-
bership functions, and Ai, Bi, Ci, i = 1, 2, . . . , r are the local models.

All the above systems are assumed to be defined on a domain D including the
origin. Although they may have several equilibrium points, in this part, without loss
of generality, we consider the analysis of the origin, i.e., to develop conditions for
the system, closed-loop system, and error dynamics, respectively to have a locally
asymptotically stable equilibrium point in xxx = 0 or eee = 0, respectively and to deter-
mine a region of attraction.

For this, we will make use of the following assumption

Assumption 8.1 There exists a domain DR ⊂ D and a symmetric matrix function
R = RT so that (

xxx(k)
xxx(k +1)

)T

R
(

xxx(k)
xxx(k +1)

)
≥ 0

holds ∀xxx(k) ∈DR or
(

eee(k)
eee(k +1)

)T

R
(

eee(k)
eee(k +1)

)
≥ 0

holds ∀eee(k) ∈DR.

Note that this assumption can always be satisfied, e.g., by reducing DR to the origin.
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8.4 Outline

This part is organized as follows. Chapter 9 presents results regarding stability anal-
ysis, Chapter 10 conditions for stabilization and Chapter 11 conditions for observer
design. In each chapter, the stability and design conditions, respectively, and the as-
sociated domain of attraction are given. Simulation examples illustrate the efficiency
of the proposed methodology, and discussions are also provided.





Chapter 9

Stability analysis

This chapter considers local stability analysis of system (8.2), repeated here for con-
venience:

xxx(k +1) = Azxxx(k) (9.1)

defined on the domain D including the origin.
This chapter presents conditions which, when satisfied, ensure that the system (9.1)

has a locally stable equilibrium point in the origin and determine a domain of attrac-
tion. To develop the conditions, first a quadratic Lyapunov function is considered.
Afterwards, the conditions are generalized by using a nonquadratic Lyapunov func-
tion. The proposed approach is discussed and illustrated on numerical examples.

9.1 Local quadratic stability

In this section, we use a quadratic Lyapunov function to develop local stability con-
ditions.

9.1.1 Stability conditions

Let us first assume that the domain DR and a constant matrix R that satisfy Assump-
tion 8.1 are given. The following result is straightforward.

Theorem 9.1 The discrete-time nonlinear model (9.1) is locally asymptotically sta-
ble if there exist matrices P = PT > 0, Mi, i = 1, 2, . . . , r and scalar τ > 0 so that

( −P (∗)
MzAz P−Mz−MT

z

)
+ τR < 0 (9.2)

Moreover, the region of attraction , i.e., the region from which all trajectories con-
verge to zero, includes DS, where DS is the largest Lyapunov level set included in DR.

133



134 CHAPTER 9. STABILITY ANALYSIS

Proof: Consider the Lyapunov function V = xxxT (k)Pxxx(k). The difference in the
Lyapunov function is

∆V = xxxT (k +1)Pxxx(k +1)− xxxT (k)Pxxx(k)

=
(

xxx(k)
xxx(k +1)

)T (−P 0
0 P

)(
xxx(k)

xxx(k +1)

)

In the domain DR Assumption 8.1 holds, thus, using Proposition 3, we have ∆V < 0
if there exists τ > 0 so that

(
xxx(k)

xxx(k +1)

)T (−P 0
0 P

)(
xxx(k)

xxx(k +1)

)
+ τ

(
xxx(k)

xxx(k +1)

)T

R
(

xxx(k)
xxx(k +1)

)
≤ 0

Furthermore, the dynamics (9.1) can be written as

(
Az −I

)(
xxx(k)

xxx(k +1)

)
= 0

Using Lemma 2.13, we have ∆V < 0 if there exist M so that

M
(
Az −I

)
+(∗)+

(−P 0
0 P

)
+ τR < 0

Choosing M =
(

0
Mz

)
leads to (9.2) and concludes the proof. ¥

Sufficient LMI conditions can easily be derived using Lemma 2.10 or Lemma 2.11,
as follows.

Corollary 9.2 The discrete-time nonlinear model (9.1) is locally asymptotically sta-
ble if there exist matrices P = PT > 0, Mi, i = 1, 2, . . . , r and scalar τ > 0 so that the
conditions of Lemma 2.10 or Lemma 2.11 hold, with

Γi j =
( −P (∗)

MiA j P−Mi−MT
i

)
+ τR

Moreover, the region of attraction includes DS, where DS is the largest Lyapunov
level set included in DR.

Now, the question arises what happens if R is unknown and how to determine R in
this case. Note that – considering (9.2) – if R is also a decision variable, the parameter
τ does not have any effect, as P, Mi, i = 1, 2, . . . , r, τ and R are all decision variables.
Thus, it is possible to solve (9.2) in the variables P, τR, and Mi i = 1, 2, . . . , r. In
what follows, with a slight abuse of notation, τR will be denoted simply by R. Then
the following result can be formulated.
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Theorem 9.3 The discrete-time nonlinear model (9.1) is locally asymptotically sta-
ble in the domain DS if there exist matrices P = PT > 0, Mi, i = 1, 2, . . . , r and R = RT

so that ( −P (∗)
MzAz P−Mz−MT

z

)
+R < 0 (9.3)

where DS is the largest Lyapunov level set included in DR
⋂

D .

Proof: Consider the Lyapunov function V = xxxT (k)Pxxx(k). The difference is

∆V =
(

xxx(k)
xxx(k +1)

)T (−P 0
0 P

)(
xxx(k)

xxx(k +1)

)

Let us assume that there exists a matrix R = RT and a domain DR such that

(
xxx(k)

xxx(k +1)

)T

R
(

xxx(k)
xxx(k +1)

)
≥ 0

holds ∀xxx(k) ∈ DR. Note that since xxx = 0 is an equilibrium point of the system (9.1),
DR always exists and it includes xxx = 0. Then, we have ∆V < 0 if

∆V <−
(

xxx(k)
xxx(k +1)

)T

R
(

xxx(k)
xxx(k +1)

)

i.e.,

(
xxx(k)

xxx(k +1)

)T (−P 0
0 P

)(
xxx(k)

xxx(k +1)

)
+

(
xxx(k)

xxx(k +1)

)T

R
(

xxx(k)
xxx(k +1)

)
< 0

Writing the dynamics of (9.1) as

(
Az −I

)(
xxx(k)

xxx(k +1)

)
= 0

and using Lemma 2.13, we have ∆V < 0 if there exist M so that

M
(
Az −I

)
+(∗)+

(−P 0
0 P

)
+R < 0

Choosing M =
(

0
Mz

)
leads to (9.3). Wrt. the domain of attraction, recall that (9.1)

has been defined in the domain D , and that

(
xxx(k)

xxx(k +1)

)T

R
(

xxx(k)
xxx(k +1)

)
≥ 0
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holds in the domain DR. Thus, convergence is established for every trajectory starting
in DS, where DS is the largest Lyapunov level set contained in DR

⋂
D . ¥

Regarding the structure of R, several possibilities can be chosen, such as, R =(
R1 0
0 −I

)
, which establishes a direct relation between xxx(k) and xxx(k + 1); a full R,

which will give a more complex relation between two consecutive samples and thus
a larger region, etc. Furthermore, depending on the structure of the system, specific
structures can be chosen for R.

9.1.2 Example and discussion

Example 9.1 Recall the system in Example 8.1, repeated here for convenience:

xxx(k +1) = h1(x1(k))A1xxx+h2(x1(k))A2xxx

with h1(x1) = a−x1(k)
2a , h2(x1(k)) = 1−h1(x1(k)), A1 =

(−a 0
1 0.5

)
, A2 =

(
a 0
1 0.5

)
.

Let us assume that the TS model is defined for a = 2. Note that in this case, using
classical conditions, it is not possible to establish (local) stability of the model. The
following options are tested:

O1: full R. The results are presented in Figure 9.1(a). The resulting matrix R is

R =




1.1 0 0 −2.31
0 2.7 0 −1.15
0 0 −2.81 0

−2.31 −1.15 0 0




As it can be seen, the resulting condition involve both x1 and x2, and the result-
ing set is DS = 0.

O2: R =
(

R1 0
0 −I

)
. The results are presented in Figure 9.1(b). The resulting

matrix R is

R =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




i.e., it requires not only x1 to decrease, but also x2. This is why the resulting
domain DS = 0.
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O3: R =




R11 0 0 0
0 0 0 0
0 0 R33 0
0 0 0 0


 giving the results in Figure 9.1(c). The resulting ma-

trix R is

R =




0.18 0 0 0
0 0 0 0
0 0 −0.18 0
0 0 0 0




i.e., it requires only x1 to decrease and actually gives the whole domain DS =
{(x1,x2)||x1|< 1}.
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(a) Results using a full R as in O1.
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(b) Results using the R in O2.
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(c) Results using the specific R in O3.

Figure 9.1: Results for Example 9.1.

For all the cases above, in order to obtain the maximum domain DR, the trace of
R has been maximized. In Fig. 9.1, the ellipses denote the Lyapunov level sets, while
‘o’ stands for those points that satisfy Assumption 8.1 with the obtained R. ¤

Remark: In order for the conditions of Theorem 9.3, it is clear that R should
have a structure to match the difference of the Lyapunov function, and ultimately the



138 CHAPTER 9. STABILITY ANALYSIS

nonlinearities in the system model. On the other hand, this is a purely deterministic
system, thus any trajectory that eventually gets in the domain DS will converge.

Let us now look at those trajectories that do not start here, but arrive in DR.

For this, consider a full R. If we check the points that are in DP plus those that
get to DR in one step, we have for Example 9.1 the results in Figure 9.2(a), for two
steps the results in Figure 9.2(b) and for 3 steps the results in Figure 9.2(c).
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(a) 0 and 1 step.
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(b) 0,1 and 2 steps.
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(c) 0,1, 2, and 3 steps.

Figure 9.2: Trajectories that converge in several steps to DR
⋂

DP for Example 9.1.

As can be seen, in 3 steps we obtain almost the whole domain on x1, although not
on x2. This is because the Lyapunov function is a common quadratic one and it does
not include knowledge on the structure of the nonlinearities.

However, as shown above, looking to
⋃β

i=1 DRi , where DRi denotes the domain of
those states whose trajectory will arrive in DR in i steps and with β a relatively small,
finite value can significantly improve the result.

Remark: Depending on the system considered, using M = [MT
1z,M

T
2z]

T instead of
M = [0,MT

z ]T may improve the result. At this point, in order to reduce the number of
variables involved and to be in line with results in the literature, we use M = [0,MT

z ]T .
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9.2 Local nonquadratic stability

Let us now consider a nonquadratic Lyapunov function V = xxxT (k)Pzxxx(k). Similarly
to the case of common quadratic Lyapunov function, the following result can be
established.

Theorem 9.4 The equilibrium point xxx = 0 of the discrete-time nonlinear model (9.1)
is locally asymptotically stable if there exist matrices Pi = PT

i > 0, Mi, Ni, i = 1, 2, . . . , r
so that (

NzAz +(∗)−Pz (∗)
MzAz−Nz Pz+1−Mz−MT

z

)
+R < 0 (9.4)

Moreover, the region of attraction, i.e., the region from which all trajectories converge
to zero, includes DS, where DS is the largest Lyapunov level set included in DR.

Proof: Consider the Lyapunov function V = xxxT (k)Pzxxx(k). The difference is

∆V = xxxT (k +1)Pz+1xxx(k +1)− xxxT (k)Pzxxx(k)

=
(

xxx(k)
xxx(k +1)

)T (−Pz 0
0 Pz+1

)(
xxx(k)

xxx(k +1)

)

In the domain DR Assumption 8.1 holds, thus, using Proposition 3, we have ∆V < 0
if

∆V <−
(

xxx(k)
xxx(k +1)

)T

R
(

xxx(k)
xxx(k +1)

)

i.e.,
(

xxx(k)
xxx(k +1)

)T (−Pz 0
0 Pz+1

)(
xxx(k)

xxx(k +1)

)
+

(
xxx(k)

xxx(k +1)

)T

R
(

xxx(k)
xxx(k +1)

)
< 0

Writing the dynamics of (9.1) as

(
Az −I

)(
xxx(k)

xxxT (k +1)

)
= 0

and using Lemma 2.13, we have ∆V < 0 if there exist M so that

M
(
Az −I

)
+(∗)+

(−Pz 0
0 Pz+1

)
+R < 0

Choosing M =
(

Nz

Mz

)
leads to (9.4). Wrt. the domain of attraction, recall that (9.1)

has been defined in the domain D , and that
(

xxx(k)
xxx(k +1)

)T

R
(

xxx(k)
xxx(k +1)

)
≥ 0
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holds in the domain DR. Thus, convergence is established for every trajectory starting
in DS, where DS is the largest Lyapunov level set contained in DR

⋂
D . ¥

Sufficient LMI conditions can easily be formulated as follows.

Corollary 9.5 The discrete-time nonlinear model (9.1) is locally asymptotically sta-
ble if there exist matrices Mi, i = 1, 2, . . . , r, P = PT > 0, and R = RT so that Lem-
mas 2.10 or 2.11 hold, with

Γi j =
(

NiA j +(∗)−Pi (∗)
MiA j−Ni Pk−Mi−MT

i

)
+R < 0

Moreover, the region of attraction includes DS, where DS is the largest Lyapunov
level set included in DR.

Similarly to the previous case, several possibilities can be chosen for R, such as
diagonal, block-diagonal, a full one or any other structure. For instance, considering

Example 9.1 and choosing R =
(

R1 0
0 −I

)
, the resulting matrix R is

R =




2 0.5 0 0
0.5 0.25 0 0
0 0 −1 0
0 0 0 −1




This result is graphically illustrated in Figure 9.3. As can be seen, almost the entire
domain is recovered.
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Figure 9.3: Domain recovered with the conditions of Theorem 9.4 for Example 9.1.

9.3 Generalization

In what follows, we generalize the previous results using the notation from Chapter 3.
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With these notations, the system (9.1) is denoted as

xxx(k +1) =AGA
0
xxx(k) (9.5)

with GA
0 = {0}.

9.3.1 Stability conditions

Let us now consider the nonquadratic Lyapunov function V = xxxT (k)PGP
0
xxx(k), where

GP
0 contains the multiindex used in the Lyapunov matrix at time k. Furthermore, in

order to also consider a nonquadratic domain, let us consider the constraint

(
xxx(k)

xxx(k +1)

)T

RGR
0

(
xxx(k)

xxx(k +1)

)
≥ 0

between consecutive samples. Then, following the lines of Theorem 9.3, we have the
result:

Theorem 9.6 The discrete-time nonlinear model (9.5) is locally asymptotically sta-
ble in the domain DS, if there exist matrices PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, MiiiHj

, iiiMj = priii
GM

j
,

and NiiiHj
, iiiNj = priii

GN
j
, iii ∈ IGV , j = 0, 1, and RiiiR0

= RT
iiiR0

, iiiR0 = priii
GR

0
, where GV = GP

0 ∪
GP

1 ∪ (GM
0 ⊕GA

0 )∪ (GN
0 ⊕GA

0 )∪GR
0 so that

(
NGN

0
AGA

0
+(∗)−PGP

0
(∗)

MGM
0
AGA

0
+NGN

0
PGP

1
−MGM

0
−MT

GM
0

)
+RGR

0
< 0 (9.6)

where DS is the largest Lyapunov level set included in DR
⋂

D .

Sufficient LMI conditions can easily be derived for the above conditions. How-
ever, in order to relaxations such as Lemmas 2.10 or 2.11, to be efficiently applied
and the computational complexity to be reduced, the delays used in the Lyapunov
function and in the Finsler matrix should be suitably chosen. We will look at the
terms that appear in GV .

Let us first consider GR
0 . Since RGR

0
is completely free and – when arriving to

sufficient LMI conditions – each term in it will be added to any term in the sum in
the expression

(
NGN

0
AGA

0
+(∗)−PGP

0
(∗)

MGM
0
AGA

0
+NGN

0
PGP

1
−MGM

0
−MT

GM
0

)
(9.7)

In order to reduce the number of final sums, GR
0 should contain all the indices ap-

pearing in (9.7). This means that in Theorem 9.6, GV = GP
0 ∪GP

1 ∪ (GM
0 ⊕GA

0 )∪
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(GN
0 ⊕GA

0 )∪GR
0 will become simply GV = GP

0 ∪GP
1 ∪ (GM

0 ⊕GA
0 )∪ (GN

0 ⊕GA
0 ). Sec-

ond, since both MGM
0

and NGN
0

are multiplied by AGA
0
, to reduce the number of

sums, the indices can be chosen the same, i.e., GM
0 = GN

0 . Thus, GV becomes GV =
GP

0 ∪GP
1 ∪ (GM

0 ⊕GA
0 ).

Further on, the reasoning from (Lendek et al., 2015) can be followed. Since
for classic TS models GA

0 = {0}, to apply relaxations, MGM
0
AGA

0
should contain a

double sum in the same sample, for instance {0,0}. Choosing GP
0 = /0 we recover

the quadratic Lyapunov function V = xxxT (k)Pxxx(k). Otherwise, since both GP
0 and GP

1
appear in (9.7), in order to combine at least one of them with MGM

0
or MGM

0
AGA

0
one

can choose either GP
0 = {0} (Guerra and Vermeiren, 2004) or GP

0 = {−1} (Lendek
et al., 2015). Then we have either

(
N0A0 +(∗)−P0 (∗)
M0A0 +N0 P1−M0−MT

0

)
+RGR

0
< 0 (9.8)

or (
N0A0 +(∗)−P−1 (∗)
M0A0 +N0 P0−M0−MT

0

)
+RGR

0
< 0 (9.9)

respectively. Both cases lead to three sums, a double one in 0 and a single one in
either 1 or−1, thus a relaxation scheme can be applied on the double sum. Since GR

0 ,
as described above contains the same indices, the total number of sums will be three,
with a double sum among them. Furthermore, since M is only used to prove stability,
it is possible to add another sum to M that will not modify the total number of sums.
Thus, we can add 1 in the case of (9.8) and −1 for (9.9), leading to

(
N0,1A0 +(∗)−P0 (∗)
M0,1A0 +N0,1 P1−M0−MT

0

)
+RGR

0
< 0 (9.10)

and (
N−1,0A0 +(∗)−P−1 (∗)
M−1,0A0 +N−1,0 P0−M0−MT

0

)
+RGR

0
< 0 (9.11)

respectively.
Now, any known relaxation (Sala and Ariño, 2007; Tuan et al., 2001) can be

applied. More generally, the choice of the index sets has to favor in GV multiple sums
at the same samples. However, not every choice is adequate, for instance choosing
GP

0 = /0 and GM
0 = {−1,−1} remains equivalent to quadratic stability.

In what follows we analyze how the negative delays in the Lyapunov function
can be handled.

Recall that the domain DS will be given by the largest Lyapunov level set in D
and DR, i.e., the domain where Assumption 8.1 holds. In fact, see also (Pitarch et al.,
2014), any trajectory that will arrive in DS will eventually converge. Consequently,
for a given xxx(0), if there exists β > 1 so that xxx(β ) ∈DS, then xxx(k)→ 0 as k → ∞.
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With this in mind, when using a Lyapunov function involving negative delays,
instead of determining the level set of e.g., V (xxx(k)) = xxxT (k)P−1xxx(k) – which would
involve setting xxx(−1) – that is included on DR it is possible to consider the level set
of xxxT (k +1)P0xxx(k +1) that is included in DR1 .

Remark: The above is equivalent to using the Lyapunov function V (xxx(k)) =
xxxT (k)PGP

0
xxx(k) only for samples k > β , with β ≥ 0 a finite number. This is possible

because the TS model (9.5) is (locally) Lipschitz continuous, and thus it does not
have a finite escape time.

Alternatively, consider the Lyapunov-like function

V (xxx(k)) = xxx(k +β )TPGP
0
xxx(k +β )

together with the domain DR given by
(

xxx(k +β )
xxx(k +β +1)

)T

RGR
0

(
xxx(k +β )

xxx(k +β +1)

)
> 0

∀xxx(k + β ) ∈ DR, where GP
0 and GR

0 only contain 0 or positive delays. Note that this
is not a Lyapunov function, as, depending on the system considered, V (xxx(k)) > 0
∀xxx(k) 6= 0 cannot be ensured. However, V (xxx(k)) is positive semidefinite.

The difference in the Lyapunov function is

∆V =
(

xxx(k +β )
xxx(k +β +1)

)T
(
−PGP

0
0

0 PGP
1

)(
xxx(k +β )

xxx(k +β +1)

)

We have ∆V < 0 if – considering the domain DR –

∆V <−
(

xxx(k +β )
xxx(k +β +1)

)T

RGR
0

(
xxx(k +β )

xxx(k +β +1)

)

i.e., (
xxx(k +β )

xxx(k +β +1)

)T
(
−PGP

0
0

0 PGP
1

)(
xxx(k +β )

xxx(k +β +1)

)

+
(

xxx(k +β )
xxx(k +β +1)

)T

RGR
0

(
xxx(k +β )

xxx(k +β +1)

)
< 0

Writing the dynamics of (9.1) as

(
AGA

0
−I

)(
xxx(k +β )

xxx(k +β +1)

)
= 0

and using Lemma 2.13, we have ∆V < 0 if there exist M so that
(
−PGP

0
0

0 PGP
1

)
+RGR

0
+M

(
AGA

0
−I

)
+(∗) < 0
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Choosing M =
(

0
MGM

0

)
leads to

(
−PGP

0
(∗)

MGM
0
AGA

0
PGP

1
−MGM

0
−MT

GM
0

)
+RGR

0
< 0 (9.12)

Note that from the point of view of the feasibility of the LMIs, under the same relax-
ation scheme, condition (9.12) is equivalent to (9.6) with NGN

0
= 0. However, both V

and ∆V above are expressed in terms of xxx(k +β ), not xxx(k). Nevertheless,

V (xxx) = xxx(k +β )TPGP
0
xxx(k +β )

is positive semidefinite and ∆V is negative semidefinite in xxx(k). Using Theorem 1
from (Grizzle and Kang, 2001), if condition (9.13) holds, then the trajectories will
converge to the largest invariant set in ∆V = 0. Since the largest invariant set is 0,
local stability is established.

Regarding the domain of attraction, recall that (9.1) has been defined in the do-
main D , and that

(
xxx(k +β )

xxx(k +β +1)

)T

RGR
0

(
xxx(k +β )

xxx(k +β +1)

)
> 0

holds in the domain DR. Thus, convergence is established for every trajectory that
arrives after β samples in DS, where DS is the largest Lyapunov level set contained
in DR

⋂
D .

All the above results can easily be extended using α-sample variation of the Lya-
punov function (Kruszewski et al., 2008). In what follows, we illustrate this on the
basic conditions from Theorem 9.3.

Recall that the system is given by

xxx(k +1) = AGA
0
xxx(k)

Consider – as in Section 9.3 – the nonquadratic Lyapunov function V = xxxT (k)PGP
0
xxx(k)

and the domain DR given by




xxx(k)
xxx(k +1)

. . .
xxx(k +α +1)




T

RGR
0




xxx(k)
xxx(k +1)

. . .
xxx(k +α +1)


 > 0

on α consecutive samples. Then we can state the following result:
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Theorem 9.7 The discrete-time nonlinear model (9.1) is locally asymptotically sta-
ble in the domain DS, if there exist matrices PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, and MiiiHj

, iiiMj =

priii
GM

j
, iii ∈ IGV , j = 0, 1, 2, . . . , α , and RiiiR0

= RT
iiiR0

, iiiR0 = priii
GR

0
, where GV = GP

0 ∪GP
α ∪

⋃α−1
i=0 (GM

i ⊕GA
i )∪GR

0 so that



−PGP
0

(∗) . . . (∗) (∗)
MGM

0
AGA

0
−MGM

0
− (∗) . . . (∗) (∗)

0 MGM
1
AGA

1
. . . (∗) (∗)

...
... . . .

...
...

0 0 . . . MGM
α−1
AGA

α−1
−MGM

α−1
− (∗)+PGP

α




+RGR
0
< 0

(9.13)
where DS is the largest Lyapunov level set included in DR

⋂
D .

Remark: Note that GV above denotes the multiset of all the delays that appear in
the sum in (9.13). The terms in

⋃α−1
i=0 (GM

i ⊕GA
i ) are actually the delays that appear

in the termsMGM
i
AGA

i
, i = 1, 2, . . . , α−1.

9.3.2 Example and discussion

In this section we illustrate the stability conditions on a numerical example.

Example 9.2 Consider the nonlinear system:

x1(k +1) = 3sin(x1(k))exp(x1(k))x1(k)

x2(k +1) =−x1(k)+ x2
2(k)

(9.14)

with x1(k),x2(k) ∈ [−2, 2].
Using the sector nonlinearity approach (Ohtake et al., 2001), with both x1 and x2

as scheduling variables, the resulting TS model is

xxx(k +1) =
4

∑
i=1

hi(zzz(k))Aixxx(k)

with

A1 =
(

3sin(−π
4 )exp(−π

4 ) 0
−1 −2

)
A2 =

(
3sin(−π

4 )exp(−π
4 ) 0

−1 2

)

A3 =
(

3sin(2)exp(2) 0
−1 −2

)
A4 =

(
3sin(2)exp(2) 0

−1 2

)

The origin is locally asymptotically stable, with the region of attraction given by
x1 ∈ [−0.35, 0.25] and x2 ∈ (−1, 1). However, the (local) stability of the TS model
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cannot be proven using classical results. Furthermore, no domain can be recovered
using a quadratic Lyapunov function.

In what follows, we consider a domain DR with RGR
0

having the form RGR
0

=(
(∗) 0
0 (∗)

)
, where the (∗) denotes values to be computed. This form – if not taking

into account the indices in GR
0 – gives a direct relation between consecutive samples.

The following results have been obtained:

R1: GP
0 = {0}, GM

0 = {0}, GR
0 = {0, 0, 1}: as can be seen in Figure 9.4(a), the

domain is reduced to zero.

R2: GP
0 = {−1}, GM

0 = {−1, 0}, GR
0 = {−1, 0, 0}: Figure 9.4(b) shows that some

domain is recovered; this result also confirms that for some systems, a delayed
Lyapunov function may provide less conservative results.

R3: GP
0 = {0}, GM

0 = {0}, GR
0 = {−1, 0, 0, 1}: in order to increase the domain,

we use a delayed index in R. As can be seen in Figure 9.4(c), the domain is
considerably increased.

R4: GP
0 = {−1, 0}, GM

0 = {−1, 0}, GR
0 = {−2,−1, 0, 0, 1}: the domain is again

increased, as illustrated in Figure 9.4(d).

R5: GP
0 = {−1,−1}, GM

0 = {−1,−1, 0}, GR
0 = {−3,−2,−1,−1, 0, 0}: the do-

main is again increased, as illustrated in Figure 9.4(e).

As illustrated in Figure 9.2, the choice of the indices GR
0 is more important than

the choice of indices in the Lyapunov function. ¤

It should be noted that when using negative delays, the actual (corresponding
to the current sample) domain cannot be graphically represented. Thus, in order to
illustrate the domain DR and the level sets, the “predicted” level sets and domain
are represented. It can be seen that by increasing the number of delays used, the
recovered region is increased (e.g., trajectories staring from the points recovered in
Figure 9.4(e), even if not in the level set, all converge to zero and only these converge
to zero). However, it has to be kept in mind that generally the implicit equation that
defined DR is very hard to solve.

It should also be noted that in general using an unstructured/ full RGR
0
, although

presenting extra degrees of freedom, may lead to a smaller region than e.g., a block-
diagonal one.

9.4 Conclusions

This chapter presented conditions to establish local stability of an equilibrium point
of a TS fuzzy model. To develop the conditions, first a common quadratic Lyapunov
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Figure 9.4: Results for Example 9.2.

function has been considered. Results have also been given using a nonquadratic
Lyapunov function and generalized for delayed nonquadratic Lyapunov functions and
α-sample variation of the Lyapunov functions. In all cases, an estimate of the region
of attraction has also been obtained. The developed conditions were illustrated and
discussed based on numerical example.





Chapter 10

Stabilization

This chapter considers local stabilization of system (8.3), repeated here for conve-
nience:

xxx(k +1) = Azxxx(k)+Bzuuu(k) (10.1)

defined on the domain D including the origin.
To develop conditions for the local stabilization, we first consider a PDC con-

troller with a quadratic Lyapunov function and then generalize to nonquadratic Lya-
punov functions and delayed controllers. Together with the stabilization a domain of
attraction is also obtained. The presented approaches are discussed and illustrated on
numerical examples.

10.1 Local quadratic stabilization

In this section, consider the controller design problem for the system (10.1). The
controller used is

uuu(k) =−FzP−1xxx(k) (10.2)

The closed-loop system can be expressed as

xxx(k +1) = (Az−BzFzP−1)xxx(k) (10.3)

Our goal is to develop conditions that ensure that this system has a locally asymp-
totically stable equilibrium point in xxx = 0 and determine a region of attraction. For
determining the stabilization conditions, first a quadratic Lyapunov function of the
form V = xxxT (k)P−1xxx(k) will be used.

10.1.1 Design conditions

Using a quadratic Lyapunov function and Assumption 8.1 for the closed-loop system,
the following result can be stated.

149
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Theorem 10.1 The closed-loop system (10.3) is locally asymptotically stable if there
exist matrices P = PT > 0, Fi, i = 1, 2, . . . , r and W = W T so that

( −P (∗)
AzP−BzFz −P

)
+W < 0

holds. Moreover, the region of attraction includes DS, where DS is the largest Lya-

punov level set included in DR, with R given by R =
(

P−1 0
0 P−1

)
W

(
P−1 0

0 P−1

)
.

Proof: The difference in the Lyapunov function is

∆V =
(

xxx(k)
xxx(k +1)

)T (−P−1 0
0 P−1

)(
xxx(k)

xxx(k +1)

)

and the closed-loop system can be expressed as

(
Az−BzFzP−1 −I

)(
xxx(k)

xxx(k +1)

)
= 0

Furthermore, in the domain DR, Assumption 8.1 holds. Thus, in this domain, (10.3)
is locally asymptotically stable, if there exists M so that

M
(
Az−BzFzP−1 −I

)
+(∗)+

(−P−1 0
0 P

)
+R < 0

Choosing

M =
(

0
P−1

)

and congruence with (
P 0
0 P

)

leads to ( −P (∗)
AzP−BzFz −P

)
+

(
P 0
0 P

)
R

(
P 0
0 P

)
< 0

Denoting W =
(

P 0
0 P

)
R

(
P 0
0 P

)
we obtain the conditions in Theorem 10.1. Since

Assumption 8.1 holds only in the domain DR, the region of attraction includes the
largest Lyapunov level set contained in DR. ¥

Sufficient LMI conditions can easily be derived using Lemmas 2.11 or 2.10, as
follows.
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Corollary 10.2 The closed-loop system (10.3) is locally asymptotically stable if there
exist matrices P = PT > 0, Fi, i = 1, 2, . . . , r and W = W T , so that Lemmas 2.10
or 2.11 hold, with

Γi, j =
( −P (∗)

AiP−BiFj −P

)
+W < 0

Moreover, the region of attraction includes DS, where DS is the largest Lyapunov
level set included in DR, given by

(
xxx(k)

xxx(k +1)

)T (
P−1 0

0 P−1

)
W ×

(
P−1 0

0 P−1

)(
xxx(k)

xxx(k +1)

)
> 0

10.1.2 Examples and discussion

Similarly to stability analysis, it should be noted that although Theorem 10.1 and
Corollary 10.2 only establish convergence of the trajectories that start in DS, actually,
any trajectory that eventually converges to DS will converge to zero. Regarding the
structure of W and, consequently, of R, several possibilities can be chosen, which
will reflect different relations between consecutive states. To illustrate the use of
the above conditions, and the effect that the structure of W will have on the result,
consider the following example.

Example 10.1 Consider the nonlinear system

x1(k +1) = x2
1(k)

x2(k +1) = x1(k)+0.5x2(k)+u(k)
(10.4)

with x1(k) ∈ [−2, 2], a > 0 being a parameter. It can be easily seen that (10.4) can
only be stabilized if x1(k) ∈ (−1, 1).

Using the sector nonlinearity approach, the resulting TS model is

xxx(k +1) = h1(x1(k))A1xxx+h2(x1(k))A2xxx+Bu(k)

with h1(x1) = a−x1(k)
4 , h2(x1(k)) = 1−h1(x1(k)), A1 =

(−2 0
1 0.5

)
, A2 =

(
2 0
1 0.5

)
,

and B =
(

0
1

)
.

Since the local models are not controllable, classical conditions for controller
design fail. In what follows, our goal is to (locally) stabilize the system. For this,
several structures of the matrix W are tested:

O1: full W . The results are presented in Figure 10.1(a). The resulting matrix R is

R = 105




−1.5 0 0 0
0 0 0 0
0 0 −1.5 0
0 0 0 0



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The resulting set DS = 0.

O2: W =
(

W1 0
0 −I

)
. The results are presented in Figure 10.1(b). The resulting

matrix R is

R =




3 0 0 0
0 0.006 0 0
0 0 −41.79 0
0 0 0 0




The domain has been significantly increased.

O3: W =




W11 0 0 0
0 0 0 0
0 0 W33 0
0 0 0 0


 giving the results in Figure 10.1(c). The resulting

matrix R is

R =




0.0007 0 0 0
0 0 0 0
0 0 −0.016 0
0 0 0 0




In this case, the resulting domain is reduced wrt. to the previous one due to the
shape of the Lyapunov level set.

For all the cases above, the trace of R has been maximized. As can be seen, the
recovered region that is proven stable is actually much smaller than the region con-
taining those initial points that actually converge to zero using the computed control
law. In what follows, consider the block-diagonal W above and verify those points
that converge to DR in Figure 10.1(b) in one and two steps, respectively. The results
are shown in Figures 10.2(a) and 10.2(b), respectively.

As can be seen, a significant improvement of the domain is obtained. In fact,
considering

⋃β
i=1 DRi , where DRi denotes the domain of those states whose trajectory

will arrive in DR in i steps and with β a relatively small, finite value, can improve the
result. ¤

A way to improve the results is by developing conditions based on non-quadratic
Lyapunov function.

10.2 Local non-quadratic stabilization

In what follows, we consider a non-PDC controller of the form

uuu(k) =−FzH−1
z xxx(k) (10.5)
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Figure 10.1: Results for Example 10.1: DR (blue ∗), the Lyapunov level sets, and the
points that will actually converge with the computed control (green o)
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Figure 10.2: Trajectories that converge to DR for Example 10.1.

The closed-loop system can be expressed as

xxx(k +1) = (Az−BzFzH−1
z )xxx(k) (10.6)
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Two Lyapunov functions will be considered, similarly to the results in (Lendek
et al., 2015):

• Case 1: V = xxxT (k)H−T
z PzH−1

z xxx(k)

• Case 2: V = xxxT (k)Pzxxx(k)

Let us first consider the Lyapunov function in the Case 1 above, together with a
domain DR defined as

(
xxx(k)

xxx(k +1)

)T (
H−T

z 0
0 H−T

z+

)
R

(
H−1

z 0
0 H−1

z+

)(
xxx(k)

xxx(k +1)

)
> 0 (10.7)

Then, the following result can be established:

Theorem 10.3 The closed-loop system (10.6) is locally asymptotically stable if there
exist matrices P = PT > 0, Fi, Hi i = 1, 2, . . . , r and R so that

( −Pz (∗)
AzHz−BzFz −Hz+−HT

z+ +Pz+

)
+R < 0

holds. Moreover, the region of attraction includes DS, where DS is the largest Lya-
punov level set included in DR.

Proof: The difference in the Lyapunov function is

∆V =
(

xxx(k)
xxx(k +1)

)T (−HT
z PzHT

z 0
0 HT

z+Pz+HT
z+

)(
xxx(k)

xxx(k +1)

)

and the closed-loop system can be expressed as

(
Az−BzFzH−1

z −I
)(

xxx(k)
xxx(k +1)

)
= 0

Furthermore, in the domain DR, (10.7) holds. Thus, in this domain, (10.6) is locally
asymptotically stable, if there exists M so that

M
(
Az−BzFzH−1

z −I
)
+(∗)+

(−HT
z PzHT

z 0
0 HT

z+Pz+HT
z+

)

+
(

H−T
z 0
0 H−T

z+

)
R

(
H−1

z 0
0 H−1

z+

)
< 0

Choosing M =
(

0
H−T

z+

)
and congruence with

(
HT

z 0
0 HT

z+

)
leads to the condition of

Theorem 10.3. Furthermore, since the condition (10.7) holds only in the domain DR,
the region of attraction includes the largest Lyapunov level set contained in DR. ¥
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Let us now consider the Lyapunov function in Case 2, together with a domain DR

defined as
(

xxx(k)
xxx(k +1)

)T (
H−T

z 0
0 P−1

z+

)
R

(
H−1

z 0
0 P−1

z+

)(
xxx(k)

xxx(k +1)

)
> 0 (10.8)

For this case, the following result can be established:

Theorem 10.4 The closed-loop system (10.6) is locally asymptotically stable if there
exist matrices P = PT > 0, Fi, Hi i = 1, 2, . . . , r and R so that

(−Hz−HT
z +Pz (∗)

AzHz−BzFz −Pz+

)
+R < 0

holds. Moreover, the region of attraction includes DS, where DS is the largest Lya-
punov level set included in DR.

Proof: The difference in the Lyapunov function is

∆V =
(

xxx(k)
xxx(k +1)

)T (−P−1
z 0

0 P−1
z+

)(
xxx(k)

xxx(k +1)

)

and the closed-loop system can be expressed as

(
Az−BzFzH−1

z −I
)(

xxx(k)
xxx(k +1)

)
= 0

Furthermore, in the domain DR, (10.8) holds. Thus, in this domain, (10.6) is locally
asymptotically stable, if there exists M so that

M
(
Az−BzFzH−1

z −I
)
+(∗)

+
(−P−1

z 0
0 Pz+

)
+

(
H−T

z 0
0 P−1

z+

)
R

(
H−1

z 0
0 P−1

z+

)
< 0

Choosing M =
(

0
P−1

z+

)
and congruence with

(
HT

z 0
0 Pz+

)

leads to (−HT
z P−1

z Hz (∗)
AzHz−BzFz −Pz+

)
+R < 0

Applying Property 5 gives the condition of Theorem 10.4. Furthermore, since the
condition (10.7) holds only in the domain DR, the region of attraction includes the
largest Lyapunov level set contained in DR. ¥
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Remark: Note that the conditions expressed in Theorems 10.3 and 10.4 above
are not equivalent and do not include each other (see also (Lendek et al., 2015)).
Depending on the system considered one or the other may give less conservative
results.

Similarly to the quadratic case, several possibilities can be chosen for W , such as
diagonal, block-diagonal, a full one or any other structure. For instance, considering
Example 10.1, choosing a diagonal W , and using the conditions of Theorem 10.3,
the resulting matrix W is W = diag{22.75,29.67,−116.25,3.47} and the estimated
domain of attraction is graphically illustrated in Figure 10.3. On the other hand, the
result obtained using Theorem 10.4 are not better than those obtained with a quadratic
Lyapunov function.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

Figure 10.3: Domain recovered with the conditions of Theorem 10.3 for Exam-
ple 10.1.

10.3 Generalization

In what follows, we will extend the results from the previous section using delayed
nonquadratic Lyapunov functions and non-PDC controllers. Thus, consider the con-
troller design problem for the system

xxx(k +1) = AGA
0
xxx(k)+BGB

0
uuu(k) (10.9)

using a controller of the form

uuu(k) =−FGF
0
H−1

GH
0

xxx(k) (10.10)

The closed-loop system can be expressed as

xxx(k +1) = (AGA
0
−BGB

0
FGF

0
H−1

GH
0
)xxx(k) (10.11)
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10.3.1 Design conditions

The following two general Lyapunov functions will be considered:

• Case 1: V = xxxT (k)H−T
GH

0
PGP

0
H−1

GH
0

xxx(k) and

• Case 2: V = xxxT (k)P−1
GP

0
xxx(k) and

Let us first consider the Lyapunov function in the Case 1 above, together with a
domain DR defined as

(
xxx(k)

xxx(k +1)

)T
(
H−T

GH
0

0

0 H−T
GH

1

)
RGR

0

(
H−1

GH
0

0

0 H−1
GH

1

)(
xxx(k)

xxx(k +1)

)
> 0 (10.12)

Then, the following result can be established:

Theorem 10.5 The closed-loop system (10.11) is locally asymptotically stable in the
domain DS, if there exist matrices PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, HiiiHj

, iiiHj = priii
GH

j
, and FiiiFj

,

iiiFj = priii
GF

j
, iii ∈ IGV , j = 0, 1, and RiiiR0

= RT
iiiR0

, iiiR0 = priii
GR

0
, where GV = GP

0 ∪GP
1 ∪ (GM

0 ⊕
GA

0 )∪ (GF
0 ⊕GB

0 )∪GR
0 so that

(
−PGP

0
(∗)

AGA
0
HGH

0
−BGB

0
FGF

0
−HGH

1
−HT

GH
1
+PGP

1

)
+RGR

0
< 0

holds. Moreover, the region of attraction includes DS, where DS is the largest Lya-
punov level set included in DR.

Proof: The difference in the Lyapunov function is

∆V =
(

xxx(k)
xxx(k +1)

)T
(−H−T

GH
0
PGP

0
H−1

GH
0

0

0 H−T
GH

1
PGP

1
H−1

GH
1

)(
xxx(k)

xxx(k +1)

)

and the closed-loop system can be expressed as

(
AGA

0
−BGB

0
FGF

0
H−1

GH
0

−I
)(

xxx(k)
xxx(k +1)

)
= 0

Furthermore, in the domain DR, (10.12) holds. Thus, in this domain, (10.11) is locally
asymptotically stable, if there exists M so that

(−H−T
GH

0
PGP

0
H−1

GH
0

0

0 H−T
GH

1
PGP

1
H−1

GH
1

)
+M

(
AGA

0
−BGB

0
FGF

0
H−1

GH
0

−I
)

+(∗)

+

(
H−T

GH
0

0

0 H−T
GH

1

)
RGR

0

(
H−1

GH
0

0

0 H−1
GH

1

)
< 0
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Choosing

M =

(
0
H−T

GH
1

)

and congruence with (
HT

GH
0

0

0 HT
GH

1

)

leads to the condition of Theorem 10.5. Furthermore, since the condition (10.12)
holds only in the domain DR, the region of attraction includes the largest Lyapunov
level set contained in DR. ¥

Let us now consider the Lyapunov function in Case 2, together with a domain DR

defined as
(

xxx(k)
xxx(k +1)

)T
(
H−T

GH
0

0

0 P−1
GP

1

)
RGR

0

(
H−1

GH
0

0

0 P−1
GP

1

)(
xxx(k)

xxx(k +1)

)
> 0 (10.13)

For this case, the following result can be established:

Theorem 10.6 The closed-loop system (10.11) is locally asymptotically stable in the
domain DS, if there exist matrices PiiiPj

= PT
iiiPj

, iiiPj = priii
GP

j
, HiiiHj

, iiiHj = priii
GH

j
, and FiiiFj

,

iiiFj = priii
GF

j
, iii ∈ IGV , j = 0, 1, and RiiiR0

= RT
iiiR0

, iiiR0 = priii
GR

0
, where GV = GP

0 ∪GP
1 ∪ (GM

0 ⊕
GA

0 )∪ (GF
0 ⊕GB

0 )∪GR
0 so that
(
−HGH

0
−HT

GH
0
+PGP

0
(∗)

AGA
0
HGH

0
−BGB

0
FGF

0
−PGP

1

)
+RGR

0
< 0

holds. Moreover, the region of attraction includes DS, where DS is the largest Lya-
punov level set included in DR.

Proof: The difference in the Lyapunov function is

∆V =
(

xxx(k)
xxx(k +1)

)T
(−P−1

GP
0

0

0 P−1
GP

1

)(
xxx(k)

xxx(k +1)

)

and the closed-loop system can be expressed as
(
AGA

0
−BGB

0
FGF

0
H−1

GH
0

−I
)(

xxx(k)
xxx(k +1)

)
= 0

Furthermore, in the domain DR, (10.13) holds. Thus, in this domain, (10.11) is locally
asymptotically stable, if there exists M so that(

−P−1
GP

0
0

0 PGP
1

)
+M

(
AGA

0
−BGB

0
FGF

0
H−1

GH
0

−I
)

+(∗)

+

(
H−T

GH
0

0

0 P−1
GP

1

)
RGR

0

(
H−1

GH
0

0

0 P−1
GP

1

)
< 0
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Choosing

M =

(
0
P−1

GP
1

)

and congruence with (
HT

GH
0

0

0 PGP
1

)

leads to (
−HT

GH
0
P−1

GP
0
HGH

0
(∗)

AGA
0
HGH

0
−BGB

0
FGF

0
−PGP

1

)
+RGR

0
< 0

Applying Property 5 gives the condition of Theorem 10.6. Furthermore, since the
condition (10.12) holds only in the domain DR, the region of attraction includes the
largest Lyapunov level set contained in DR. ¥

Let us now discuss the choice of the delays in GP
0 , GH

0 , GF
0 , and GR

0 . Similarly
to the stability analysis case, since RGR

0
is simply added, it should contain all the

appearing indices. Furthermore, a reasonable choice is GH
0 = GF

0 , since they appear
multiplied by Az and Bz, respectively. Thus, GV is now reduced to GV = GP

0 ∪GP
1 ∪

(GH
0 ⊕GA

0 ). Taking into account that GH
0 cannot contain positive indices (as they

refer to future states) and following the reasoning in (Lendek et al., 2015), from the
point of conservatism reduction approaches and reduced computational complexity,
for Case 1, the best choices are GP

0 = {0, 0, . . . , 0} and GF
0 = GH

0 = {0, 0, . . . , 0}
and for Case 2, GP

0 = {−1,−1, . . . ,−1} and GF
0 = GH

0 = {0, 0, . . . , 0,−1, . . . ,−1}.
These choices reduce the number of sums as follows

• Case 1: assuming |GP
0 | = |GH

0 | = nP, the number of sums in Theorem 10.5 is
2nP +1 and the number of LMIs to be solved (before relaxations) is r2np+1.

• Case 2: assuming |GP
0 |= |GH

0 |= 2nP, the number of sums in Theorem 10.6 is
2nP +1 and the number of LMIs to be solved (before relaxations) is r2np+1.

On the other hand, including negative, or even positive delays in GR
0 , although it

increases the computational complexity, involves a condition on the trajectory of the
states and thus it may increase the region of attraction. Furthermore, similarly to the
stability analysis, it is possible to consider the future Lyapunov level sets included in
future DR.

10.3.2 Example and discussion

In this section we illustrate the controller design results on a numerical example.
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Example 10.2 Consider the nonlinear system:

x1(k +1) = 4
x2

1(k)
1+ x2

1(k)
+0.1x2(k)

x2(k +1) =−x1(k)− 1
2

x2(k)+u(k)

(10.14)

Using the sector nonlinearity approach (Ohtake et al., 2001), with x1 as schedul-
ing variable, the resulting TS model is

xxx(k +1) =
2

∑
i=1

hi(zzz(k))(Aixxx(k)+Bu(k))

with

A1 =
(−2 0.1
−1 −2

)
A2 =

(
2 0.1
−1 2

)
B =

(
0
1

)

Both local models are unstable and uncontrollable and controller design using
either quadratic or nonquadratic Lyapunov functions results in unfeasible LMIs.

To illustrate local stabilization, consider the conditions of Theorem 10.5. For
the different choices of the delays, the results are presented in Figure 10.4. In all
the figures, the ∗ denotes the domain DR, the Lyapunov level sets are drawn, and
the green o and x denote initial values from which trajectories converge to zero and
diverge, respectively.

To circumvent this issue of the graphical representation with negative delays, the
“predicted” domain and/or level sets are illustrated, as discussed in Section 9.3.

R1: GP
0 = {0}, GH

0 = GF
0 = {0}, GR

0 = {0, 0, 1}, unstructured RGR
0
: as can be seen

in Figure 10.4(a), the domain is reduced to zero. Note that even increasing
the number of indices used, e.g., GP

0 = {0, 0, 0, 0}, GH
0 = GF

0 = {0, 0, 0, 0},
GR

0 = {0, 0, 0, 0, 1, 1, 1, 1, 1}, the domain does not increase.

Since an increase of the domain cannot be obtained using a fullRGR
0
, in what follows,

a block-diagonal one is considered.

R2: GP
0 = {0, 0}, GH

0 = GF
0 = {0}, GR

0 = {0, 0, 1, 1}: as can be seen in Fig-
ure 10.4(b), the domain is still reduced to zero. A similar result is obtained
for the classic choices, i.e., GP

0 = {0}, GH
0 = GF

0 = {0}, GR
0 = {0, 0, 1}.

R3: GP
0 = {0, 0, 0}, GH

0 = GF
0 = {0, 0}, GR

0 = {0, 0, 0, 1, 1, 1}: as can be seen
in Figure 10.4(c), the domain has increased. This can be somewhat, but not
significantly increased extending the number of indices used.

Therefore, in what follows, we consider including past samples in the domain
definition.
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R4: GP
0 = {0, 0, 0}, GH

0 = GF
0 = {0, 0}, GR

0 = {−1, 0, 0, 0, 1, 1, 1}: as can be seen
in Figure 10.4(d), the domain increases. Note that including the delayed in-
dices in GP

0 does not have any positive effect on the domain.

R5: GP
0 = {0, 0, 0}, GH

0 = GF
0 = {0, 0}, GR

0 = {−2,−1, 0, 0, 0, 1, 1, 1}: as can be
seen in Figure 10.4(e), the domain further increases.
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Figure 10.4: Results for Example 10.2

¤
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Similarly to the stability problem, by introducing further delays in the domain
matrix, the domain is increased. Furthermore, the “predicted” Lyapunov level sets
asymptotically converge to the domain where the system is stabilized.

It has to be noted that using delays in HGH
0

and FGF
0

requires the specification of
xxx(−1), xxx(−2), etc. This means that the region recovered will depend not only on
the initial states, but also on these delayed states. This is in particular the case of
Theorem 10.6, where, in order to obtain less conservative results, GF

0 and GH
0 should

include −1.
Similarly to stability analysis, a structured RGR

0
seems to lead to an increase of

the region. However, one should keep in mind that the region is actually determined
not only by RGR

0
, but also by HGH

0
and RGR

0
. The elucidation of the problem of how

exactly the structure of RGR
0

should be chosen such that the region is optimized is left
for future research.

10.4 Extension: local set point tracking control

Consider now the discrete-time TS system

xxx(k +1) = Azxxx(k)+Bzuuu(k)
yyy(k) = Cxxx(k)

(10.15)

defined on a domain D including the origin, where yyy denotes the output.
Our goal is to determine a control law, such that yyy tracks a desired reference

signal yyyr. For this, we will use the auxiliary state variable xxxI(k) – corresponding to
an integral term – with the dynamics given by xxxI(k + 1) = xxxI(k)−Cxxx(k)+ yyyr. The
extended state dynamics are

xxx(k +1) = Azxxx(k)+Bzuuu(k)

xxxI(k +1) = xxxI(k)−Cxxx(k)+ yyyr

Denoting xxxe(k) =
(

xxx(k)
xxxI(k)

)
, Ae

z =
(

Az 0
−C I

)
, Be

z =
(

Bz

0

)
, D =

(
0
I

)
we have

xxxe(k +1) = Ae
zxxxe(k)+Be

zuuu(k)+Dyyyr

and we consider a control law uuu(k) =−FzH−1
z xxxe(k). The closed-loop system is

xxxe(k +1) = (Ae
z −Be

zFzH−1
z )xxxe(k)+Dyyyr (10.16)

If the closed-loop system (10.16) with yyyr = 0 is globally uniformly asymptotically
stable, then it is also input-to-state stable (ISS) with respect to the exogenous input
yyyr. In what follows, we determine conditions for the local tracking and determine a
region where tracking is possible.
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Similarly to the stabilization problem, consider the nonquadratic Lyapunov func-

tion V = xxxeT (k)P−1xxxe(k), together with the constraint
(

xxxe(k)
xxxe(k +1)

)T

R
(

xxxe(k)
xxxe(k +1)

)

between consecutive samples. We have the result:

Theorem 10.7 The discrete-time nonlinear model (10.16) is locally ISS with respect
to the exogenous input yyyr in the domain DS, if there exist P, Fz, Hz, and W, so that

(−HT
z −Hz +P (∗)

Ae
zHz−Be

zFz −P+

)
+W < 0 (10.17)

where DR is given by

DR =

{
xxxe(k) ∈D |

(
xxxe(k)

xxxe(k +1)

)T (
H−T

z 0
0 P−1

+

)
W

(
H−1

z 0
0 P−1

+

)(
xxxe(k)

xxxe(k +1)

)
≥ 0

}

and DS is the largest Lyapunov level set included in DR
⋂

D .

Proof: Consider the candidate Lyapunov function V = (xxxe)T (k)P−1xxxe(k). The
difference in V is

∆V = (xxxe)T (k +1)P−1
+ xxxe(k +1)− (xxxe)T (k)P−1xxxe(k)

=
(

xxxe(k)
xxxe(k +1)

)T (−P−1 0
0 P−1

+

)(
xxxe(k)

xxxe(k +1)

)

The dynamics (10.16) can be written as

(
Ae

z −Be
zFzH−1

z −I D
)



xxxe(k)
xxxe(k +1)

yyyr


 = 0

Then, we have

∆V =
(

xxxe(k)
xxxe(k +1)

)T (−P−1 0
0 P−1

+

)(
xxxe(k)

xxxe(k +1)

)

+




xxxe(k)
xxxe(k +1)

yyyr




T 





0
P−1
+
0


(

Ae
z −Be

zFzH−1
z −I D

)
+(∗)







xxxe(k)
xxxe(k +1)

yyyr




=
(

xxxe(k)
xxxe(k +1)

)T ( −P−1 (∗)
P−1
+ (Ae

z −Be
zFzH−1

z ) −P−1
+

)(
xxxe(k)

xxxe(k +1)

)

+2yyyrP
−1
+

(
(Ae

z −Be
zFzH−1

z )xxxe(k)+Dyyyr
)

≤Q(xxxe)+2δ‖yyyr‖‖xxxe(k)‖+2α‖yyyr‖2
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where

Q(xxxe) =
(

xxxe(k)
xxxe(k +1)

)T ( −P−1 (∗)
P−1
+ (Ae

z −Be
zFzH−1

z ) −P−1
+

)(
xxxe(k)

xxxe(k +1)

)

and δ ≥ 0 and α ≥ 0 are bounding constants, i.e., ‖P−1
+ (Az−BzFzH−1

z )‖ ≤ δ and
‖P−1

+ D‖ ≤ α .
Let us now consider Q(xxxe). Assuming that there exists R and a domain DR such

that (
xxxe(k)

xxxe(k +1)

)T

R
(

xxxe(k)
xxxe(k +1)

)
≥ 0

Q(xxxe) < 0, if ( −P−1 (∗)
P−1
+ (Ae

z −Be
zFzH−1

z ) −P−1
+

)
+R < 0

Congruence with
(

HT
z 0

0 P+

)
and applying Proposition 5 gives

(−HT
z −Hz +P (∗)

Ae
zHz−Be

zFz −P+

)
+

(
HT

z 0
0 P+

)
R

(
Hz 0
0 P+

)
< 0 (10.18)

or (−HT
z −Hz +P (∗)

Ae
zHz−Be

zFz −P+

)
+W < 0

Furthermore in DR where (10.18) holds, ∃λ > 0 so that Q(xxxe) <−λ‖xxxe(k)‖2. Con-
sequently, in this domain,

∆V ≤−λ‖xxxe(k)‖2 +2δ‖yyyr‖‖xxxe(k)‖+2α‖yyyr‖2

and by the completion of squares, 2δ‖yyyr‖‖xxxe(k)‖ ≤ 1
θ ‖xxxe(k)‖2 +δ 2θ‖yyyr‖2, ∀θ > 0,

thus
∆V ≤−λ‖xxxe(k)‖2 +

1
θ
‖xxxe(k)‖2 +δ 2θ‖yyyr‖2 +2α‖yyyr‖2

Choosing θ > 1
λ and denoting c1 = λ − 1

θ > 0 and c2 = δ 2θ +2α , we have

∆V ≤−c1‖xxxe(k)‖2 + c2‖yyyr‖2

Furthermore, consider τ ∈ (0, 1). Then,

∆V ≤−(1− τ)c1‖xxxe(k)‖2− τc1‖xxxe(k)‖2 + c2‖yyyr‖2

≤−(1− τ)c1‖xxxe(k)‖2 ∀‖xxxe‖2 ≥ c2

τc1
‖yyyr‖2

i.e., the closed-loop system (10.16) is ISS with respect to the exogenous input yyyr,
with an ultimate bound given by c2

τc1
. ¥
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While the bounding constants α and δ do not affect the feasibility of the devel-
oped LMI conditions, they do affect the bound above and how closely the systems
output yyy will track the reference signal yyyr. Thus, in what follows, we develop LMI
conditions for the minimization of this bound. Recall that ‖P−1

+ (Ae
z−Be

zFzH−1
z )‖ ≤ δ

and ‖P−1
+ D‖ ≤ α and consider first ‖P−1

+ D‖ ≤ α . This is satisfied if

DT P−1
+ P−1

+ D≤ α2I

α2I−DT P−1
+ P−1

+ D≥ 0

By the Schur complement, we have

(
α2I DT P−1

+
P−1
+ D I

)
≥ 0

Congruence with diag(I P+) gives

(
α2I DT

D P+P+

)
≥ 0

and using Proposition 5 on P+P+ we obtain

(
α2I DT

D 2P+− I

)
≥ 0 (10.19)

Consider now ‖P−1
+ (Ae

z −Be
zFzH−1

z )‖ ≤ δ . This is satisfied, if

(P−1
+ (Ae

z −Be
zFzH−1

z ))T P−1
+ (Ae

z −Be
zFzH−1

z )≤ δ 2I

Using the Schur complement and congruence with diag(HT
z P+) gives

(
HT

z δ 2Hz (∗)
Ae

zHz−Be
zFz P+P+

)
≥ 0

and using Proposition 5 on both HT
z δ 2Hz and P+P+ leads to

(
HT

z +Hz− 1
δ 2 I (∗)

Ae
zHz−Be

zFz 2P+− I

)
≥ 0 (10.20)

Furthermore, since the bound c2
τc1

depends on c1, which in turn depends on λ , λ
should be maximized. Then, Q(xxxe)≤−λ‖xxxe(k)‖, if

( −P−1 +λ (∗)
P−1
+ (Ae

z −Be
zFzH−1

z ) −P−1
+

)
+R < 0
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Similarly to the proof of Theorem 10.7, congruence with
(

HT
z 0

0 P+

)
and applying

Proposition 5 gives
(−HT

z −Hz +λHT
z Hz +P (∗)

Ae
zHz−Be

zFz −P+

)
+W < 0

which, after applying the Schur complement results in


−HT

z −Hz +P (∗) (∗)
Ae

zHz−Be
zFz −P+ 0

HT
z 0 − 1

λ I


+

(
W 0
0 0

)
< 0 (10.21)

This result can be summarized as follows.

Corollary 10.8 The discrete-time nonlinear model (10.16) is locally ISS with respect
to the exogenous input yyyr in the domain DS, if there exist P, Fz, Hz, and W, so that
condition (10.17) holds. Furthermore, the ultimate bound on the states can be mini-
mized by solving

minimize α , δ , maximize λ
subject to (10.19), (10.20), (10.21)

together with (10.17).

10.5 Conclusions

This chapter presented conditions for local stabilization of a TS fuzzy model. First a
common quadratic Lyapunov function has been used and then the results have been
extended to nonquadratic Lyapunov functions. The main idea was to combine the
search for the control gains with the maximization of the domain of attraction using
an LMI formalism. The developed conditions have also been generalized using de-
layed nonquadratic Lyapunov functions and controller gains and have been extended
to local set point tracking control. The conditions have been illustrated on numerical
examples.



Chapter 11

Observer design

This chapter considers local observer design for system (8.4), repeated here for con-
venience:

xxx(k +1) = Azxxx(k)+Bzuuu(k)
yyy(k) = Czxxx(k)

(11.1)

defined on the domain D including the origin.
Our objective is to design a state observer of the form

x̂xx(k +1) = Azx̂xx(k)+Bzuuu(k)+M−1
z Lz(yyy(k)− ŷyy(k))

ŷyy(k) = Czx̂xx(k)+Dzuuu(k)
(11.2)

and the goal is then to find the observer gains Mz and Lz such that the state estimate
x̂xx asymptotically converges towards the system state xxx, which is equivalent to ensur-
ing the convergence of the estimation error to zero. Under the assumption that the
scheduling vector depends only on measured variables, the estimation error dynam-
ics, from (11.1) and (11.2), are given by

eee(k +1) = (Az−M−1
z LzCz)eee(k) (11.3)

Similarly to stability analysis and stabilization, we first consider a quadratic Lya-
punov function and then the results are generalized to nonquadratic Lyapunov func-
tions. Together with the observer gains, a domain of attraction of the error dynamics
is also obtained. The presented approaches are discussed and illustrated on numerical
examples.

11.1 Quadratic design

We first present results obtained by using a quadratic Lyapunov function V = eee(k)T Peee(k).
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11.1.1 Design conditions

Using a quadratic Lyapunov function, the following result can be established.

Theorem 11.1 There exists an observer of the form (11.2) for the system (11.1),
such that the state estimation error eee(k) asymptotically converges towards the origin
in the largest Lyapunov level set included in the domain D ∩DR, if there exists a
positive scalar ε , a symmetric positive definite matrix P ∈ Rn×n, a symmetric matrix
R ∈ R2n×2n, matrices Mi ∈ Rn×n and Li ∈ Rn×ny , for i ∈Ir, satisfying the following
matrix inequality

(
ε(MzAz−LzCz)+(∗)−P (∗)

MzAz−LzCz− εMT
z P−Mz− (∗)

)
+R < 0 (11.4)

Proof: In order to prove the local asymptotic convergence of the state estimation
error, we have to prove the negativeness of the difference of the quadratic Lyapunov
function, namely

∆V (k) =
(

e(k)
e(k +1)

)T (−P 0
0 P

)(
e(k)

e(k +1)

)
< 0 (11.5)

in DR and along the trajectory of (11.3). The dynamics of the state estimation er-
ror (11.3) can also be written as the following equality constraint

(
Az−M−1

z LzCz −I
)(

eee(k)
eee(k +1)

)
= 0 (11.6)

Defining M by

M =
(

εMz

Mz

)
(11.7)

the inequality (11.4) can be written as

R+
(−P 0

0 P

)
+M

(
Az−M−1

z LzCz −I
)
+(∗) < 0 (11.8)

Pre- and post-multiplying (11.8) by vvvT = (eeeT (k) eeeT (k + 1)), from Lemma 2.13, it
implies that (

eee(k)
eee(k +1)

)T ((
P 0
0 −P

)
−R

)(
eee(k)

eee(k +1)

)
> 0 (11.9)

holds along the trajectory of (11.3). From Property 3, with τ = 1, F1 = R and F0 =
diag(P,−P), inequality (11.9) implies that, in DR (i.e. if zT Rz > 0 is satisfied), we
have

zT diag(P,−P)z > 0 (11.10)
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This last inequality is equivalent to (11.5) and achieves the proof. ¥
Since the matrix inequality (11.4) is based on a double summation both involv-

ing the same weighting functions hi(z(k)), the relaxation schemes in Lemmas 2.10
or 2.11 can easily be used to derive sufficient conditions that are numerically tractable
with classical dedicated softwares. Moreover, in this case, the observer gains in (11.2)
are directly obtained from the numerical solution of the LMI problem given in the
following corollary.

Corollary 11.2 There exists an observer (11.2) for the system (11.1), such that the
state estimation error eee(k) asymptotically converges towards the origin in the largest
Lyapunov level set included in D ∩DR, if there exists a positive scalar ε , a symmetric
positive definite matrix P∈Rn×n, a symmetric matrix R∈R2n×2n, matrices Mi ∈Rn×n

for i∈Ir and Li ∈Rn×ny satisfying the conditions of Lemmas 2.10 or 2.11 where Γi j,
for (i, j) ∈I 2

r , are defined as

Γi j =
(

ε(M jAi−LiC j)+(∗)−P (∗)
M jAi−LiC j− εMT

j P−M j− (∗)
)

+R (11.11)

Remark: Due to ε , the conditions in Corollary 11.2 are parameterized LMIs. To
obtain LMIs, ε may be fixed or can be searched for in a logarithmically spaced family
of values (Oliveira and Peres, 2007), ε ∈ {10−6, 10−5, . . . , 106}.

11.1.2 Example and discussion

In what follows, we illustrate the developed conditions on a numerical example.

Example 11.1 Consider the four-rule TS model defined on the domain D = {x1, x2 ∈
[−2,2]}, with local matrices

A1 =
(−2 −1

1 4.25

)
C1 =

(
1 0

)

A2 =
(−2 1

1 −4.25

)
C2 =

(−5 0
)

A3 =
(

2 −1
1 4.25

)
C3 =

(
1 0

)

A4 =
(

2 1
1 −4.25

)
C4 =

(−5 0
)
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and membership functions

h1(x1) =
(2− x1)

4
(1− sin(x1))

2

h2(x1) =
(2− x1)

4
(1+ sin(x1))

2

h3(x1) =
(2+ x1)

4
(1− sin(x1))

2

h4(x1) =
(2+ x1)

4
(1+ sin(x1))

2

The above membership functions have the convex sum property.
Note that for this specific TS model, neither a PDC nor a non-PDC observer

can be designed, independent of the Lyapunov function used (common quadratic or
nonquadratic) – the LMI conditions are unfeasible. In what follows, we study if a
local observer can be designed using the conditions of Theorem 11.1. In order to
maximize the domain DR, the matrix R has been chosen with the following structure

R = diag(R̄,−I) (11.12)

where R̄ is a decision variable whose trace is being maximized.
The conditions of Theorem 11.1 with ε = 0 and using Lemma 2.10 for relaxation

are feasible and the following results have been obtained:

P =
(

1 0
0 1

)
R =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




M1 = 10−3
(

0.5 0
0 0.5

)
L1 = 10−3

(
0.1351
0.3273

)

M2 = 10−3
(

0.5 0
0 0.5

)
L2 = 10−3

(
0.0027
−0.2136

)

M3 = 10−3
(

0.5 0
0 0.5

)
L3 = 10−4

(
0.1377
−0.6871

)

M4 = 10−3
(

0.5 0
0 0.5

)
L4 = 10−3

(
0.0316
−0.1324

)

Even if the Lyapunov function in this case is quadratic and thus does not depend
on the scheduling variables, one should note that due to its definition, DR depends
both on eee(k) and eee(k+1) and thus indirectly depends on the scheduling variable zzz(k).
Consequently, the actual region of attraction DR depends on zzz(k).

To verify in which domain the estimation error converges to zero, the domain DR

and the Lyapunov level sets are presented in Figure 11.1. Note that for x1 ≤ −0.2
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and x1 ≥ 0.25, the Lyapunov level sets included in DR are reduced to zero, as seen
in Figure 11.1(d). A trajectory of the error dynamics, with xxx(0) = [−0.15,−1]T and
eee(0) = [−1, 1]T is presented in Figure 11.2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

e
1

e 2

x
1
=−0.15

(a) x1 =−0.15

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

e
1

e 2

x
1
=0

(b) x1 = 0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

e
1

e 2

x
1
=0.2

(c) x1 = 0.2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

e
1

e 2

x
1
=0.25

(d) x1 = 0.25

Figure 11.1: The domain DR (*) and the Lyapunov level sets for different values of
the scheduling variables.
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Figure 11.2: A trajectory of the estimation error.
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11.2 Non-quadratic design

In order to obtain a more general result, a nonquadratic Lyapunov function is ex-
ploited here and the following theorem details the existence condition of the ob-
server (11.2) in the non-quadratic case.

Theorem 11.3 There exists an observer (11.2) for the system (11.1), such that the
state estimation error eee(k) asymptotically converges towards the origin in the largest
Lyapunov level set included in D ∩DR, if there exists a positive scalar ε , symmetric
positive definite matrices Pi ∈ Rn×n, a symmetric matrix R ∈ R2n×2n, matrices Mi ∈
Rn×n and Li ∈ Rn×ny , for i ∈Ir, satisfying the following inequalities.

(
ε(MzAz−LzCz)+(∗)−Pz (∗)

MzAz−LzCz− εMT
z Pz+−Mz− (∗)

)
+R < 0 (11.13)

Proof: Consider the Lyapunov function V = eee(k)T Pzeee(k). The proof follows the
same line as the one of the theorem 11.1, except that the difference of the Lyapunov
function is given by

∆V =
(

eee(k)
eee(k +1)

)T (−Pz 0
0 Pz+

)(
eee(k)

eee(k +1)

)
(11.14)

¥
Sufficient parameterized LMI conditions for Theorem 11.3 can be set up as fol-

lows.

Corollary 11.4 There exists an observer (11.2) for the system (11.1), such that the
state estimation error eee(k) asymptotically converges towards the origin in the largest
Lyapunov level set included in D ∩DR, if there exists a positive scalar ε , symmetric
positive definite matrices Pi ∈ Rn×n, a symmetric matrix R ∈ R2n×2n, matrices Mi ∈
Rn×n for i∈Ir and Li ∈Rn×ny satisfying the conditions of Lemmas 2.10 or 2.11 with

Γi jk =
(

ε(M jAi−LiC j)+(∗)−Pj (∗)
M jAi−LiC j− εMT

j Pk−M j− (∗)
)

+R (11.15)

Remark: For different ε , different R matrices, but at the same time, different
observer gains can be obtained. Since the error dynamics will be different for each
case, comparing the corresponding domains is far from trivial.

11.3 Conclusions

In this chapter, LMI conditions have been proposed for the design of local state ob-
servers for TS fuzzy systems. Both quadratic and non-quadratic Lyapunov functions
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have been employed to derive the conditions. It has to be noted that although the
conditions of Theorems 11.1 and 11.3 may be used to design local observers, the
shortcoming of this design is that the domain has to be verified a posteriori. This de-
sign can naturally be extended for α sample variation of the Lyapunov function and
possible improvement may be obtained with the introduction of delayed Lyapunov
functions. However, the domain, unlike in case of stability analysis and stabilization,
naturally depends not only on the estimation error, but also on the states of the sys-
tem and the estimated states, thus making the verification cumbersome. This problem
may be alleviated by using a domain description depending on the measurement error
instead of the estimation error.
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Chapter 12

Other directions

In addition to my main work thread on periodic and switching systems and local anal-
ysis and design, I have also worked together with students on offshoot directions from
my research: descriptor systems, and applications in diverse fields. These directions
are briefly overviewed next, in Sections 12.1 and 12.2, respectively.

12.1 Descriptor systems

The dynamic models of mechanical systems are generally determined using the Euler-
Lagrange equations (Lewis et al., 2004; Spong et al., 2005), which give second-order
vector differential equations. Once the Euler-Lagrange equations are obtained, the
state-space representation is naturally in a descriptor form (Lewis et al., 2004; Luen-
berger, 1977; Chen et al., 2009), i.e., it has the mass matrix on the left-hand side. TS
descriptor models have been introduced in (Taniguchi et al., 1999). Next to gener-
alizing the standard TS model, they allow obtaining a smaller number of conditions
(Taniguchi et al., 2000; Guerra and Vermeiren, 2004; Guerra et al., 2007) by keep-
ing apart the nonlinearities on the two sides of the equation. A major direction of
our research here has been the investigation with PhD student V. Estrada-Manzo of
such descriptor systems. First, we considered continuous-time descriptor systems
and using Finsler’s lemma to decouple the control law from the Lyapunov function,
an improved controller design method has been proposed in (P27). For observer de-
sign, we have proposed a pure LMI formulation of the conditions in (P26), a major
step forward from existing BMI conditions. A generalization of this method has been
presented in (P18). We have also proposed an unknown input observer design method
in (P19), where the conditions are pure LMIs.

Next, we investigated discrete-time descriptor systems. Two approaches for con-
troller design via two different Lyapunov functions have been proposed in (P25). The
design methods have been generalized in (P17). An observer design method, using
Finsler’s lemma to decouple the Lyapunov matrices and the observer gains has been
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presented in (P24). This approach allows more general observer structures and thus a
larger number of decision variables and has been generalized in (P16). An improve-
ment of this method for the quadratic case has been illustrated in (P21). Next, we
have developed a static output feedback control method for the case when there are
several output matrices.

Inspired by the way the Lyapunov function and the controller/observer gains can
be decoupled in the discrete-time case, we have developed a similar approach for the
continuous case, for static output feedback control, in (P20).

The following publications were discussed in this section:

(P16) V. Estrada-Manzo, T. M. Guerra, Zs. Lendek, Generalized observer design for
discrete-time T-S descriptor models. Neurocomputing, vol. 182, pages 210-
220, 2016.

(P17) V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, Ph. Pudlo, Controller design for
discrete-time descriptor models: a systematic LMI approach. IEEE Transac-
tions on Fuzzy Systems, vol. 23 , no. 5, pages 1608-1621, 2015.

(P18) T. M. Guerra, V. Estrada-Manzo, Zs. Lendek, Observer design for Takagi-
Sugeno descriptor models: an LMI approach. Automatica, vol. 52 , no. 2,
pages 154-159, 2015.

(P19) V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, Unknown input estimation for
nonlinear descriptor systems via LMIs and Takagi-Sugeno models. In Proceed-
ings of the 54th IEEE Conference on Decision and Control, pages 1-6, Osaka,
Japan, December 2015.

(P20) V. Estrada-Manzo, T. M. Guerra, Zs. Lendek, Static output feedback control
for continuous-time TS descriptor models: decoupling the Lyapunov function.
In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems,
pages 1-6, Istanbul, Turkey, August 2015.

(P21) V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, Improving the observer design
for discrete-time TS descriptor models under the quadratic framework. In Pro-
ceedings of the IFAC Conference on Embedded Systems, Computational In-
telligence and Telematics in Control, pages 276-281, Maribor, Slovenia, June
2015.

(P22) V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, Output feedback control for T-S
discrete-time nonlinear descriptor models. In Proceedings of the 53rd IEEE
Conference on Decision and Control, pages 860-865, Los Angeles, CA, USA,
December 2014.

(P23) V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, H∞ control for discrete-time
Takagi-Sugeno descriptor models: a delayed approach. In Proceedings of the
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23e Rencontres Francophones sur la Logique Floue et ses Applications, pages
1-6, Ajaccio, France, October 2014.

(P24) V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, Discrete-time Takagi-Sugeno
descriptor models: observer design. In Preprints of the 2014 IFAC World
Congress, pages 7965-7969, Cape Town, South Africa, August 2014.

(P25) V. Estrada-Manzo, T. M. Guerra, Zs. Lendek, Discrete-time Takagi-Sugeno
descriptor models: controller design. In Proceedings of the 2014 IEEE World
Congress on Computational Intelligence, IEEE International Conference on
Fuzzy Systems, pages 1-5, Beijing, China, July 2014.

(P26) V. Estrada-Manzo, T. M. Guerra, Zs. Lendek, An LMI approach for observer
design for Takagi-Sugeno descriptor models. In Proceedings of the 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics, pages
1-6, Cluj-Napoca, Romania, May 2014.

(P27) V. Estrada-Manzo, T. M. Guerra, Zs. Lendek, M. Bernal, Improvements on
non-quadratic stabilization of continuous-time Takagi-Sugeno descriptor mod-
els. In Proceedings of the 2013 IEEE International Conference on Fuzzy Sys-
tems, pages 1-6, Hyderabad, India, July 2013.

12.2 Applications

Together with students S. Beyhan, A. Berna, J. Guzman-Gimenez, P. Petrehus, Z.
Nagy, E. Páll, and V. Estrada-Manzo, the developed methods have been tested in
simulation and in real-world experiments for the control and observation of several
processes, mostly robotic applications.

For instance, we have considered the control and estimation problems for a robotic
manipulator that transports a varying payload. We have tested adaptive fuzzy and
sliding-mode control in (P38), fuzzy observers and extended Kalman filters, respec-
tively in (P35), adaptive control in (P32). For a 2DOF robot arm, we have developed
an robust controller coupled with an adaptive observer in (P36), and, to estimate
the torque in the absence of available measurements, an unknown input observer in
(P30). The modeling and design of observer and controller for a 3D crane has been
presented in (P34). Finally, control of a quadcopter has been presented in e.g., (P37)
and (P29).

The above mentioned work was presented in the following publications:

(P28) V. Estrada-Manzo, Zs. Lendek, T. M. Guerra, Observer Design for Robotic
Systems via Takagi-Sugeno Models and Linear Matrix Inequalities. In Han-
dling uncertainty and networked structure in robot control, series Studies in
Systems, Decision and Control, L. Busoniu and L. Tamas, Editors, pages 103-
128. Springer International Publishing, 2015.
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(P29) Zs. Lendek, A. Sala, P. Garcia, R. Sanchis, Experimental application of Takagi-
Sugeno observers and controllers in a nonlinear electromechanical system.
Journal of Control Engineering and Applied Informatics, vol. 15 , no. 4, pages
3-14, 2013.

(P30) Z. Nagy, E. Pall, Zs. Lendek, Unknown input observer for a robot arm using
TS fuzzy descriptor models. In Proceedings of the 2017 IEEE Conference on
Control Technology and Applications, pages 939-944, Hawaii, USA, August
2017.

(P31) Z. Nagy, Zs. Lendek, Quadcopter modeling and control. In Proceedings of
the Journees Francophones sur la Planification, la Decision et l’Apprentissage
pour la conduite de systemes, pages 1-2, Caen, France, July 2017

(P32) S. Beyhan, F. Sarabi, Zs. Lendek, R. Babuska, Takagi-Sugeno fuzzy pay-
load estimation and adaptive control. In Preprints of the 2017 IFAC World
Congress, pages 867-872, Toulouse, France, July 2017.

(P33) Z. Nagy, Zs. Lendek, Takagi Sugeno fuzzy modelling and control of a robot
arm. In Proceedings of the 17th International Conference on Energetics-Electrical
Engineering, 26th International Conference on Computers and Education, pages
265-270, Cluj-Napoca, Romania, October 2016.

(P34) P. Petrehus, Zs. Lendek, P. Raica, Fuzzy modeling and control of a 3D crane. In
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Chapter 13

Overall plans for the future

13.1 Introduction

My research work aims at developing control and estimation methods for complex
systems. This is motivated by the high complexity of modern controlled systems,
manifested in properties such as nonlinearity, time-variance, stochasticity and dis-
tributed or switching nature. Automated systems are increasingly expected to per-
form well in complex and unpredictable environments, such as in the everyday sur-
roundings of human beings. Thus, advanced, nonlinear control algorithms that can
handle such uncertainties are necessary, which in turn rely on more and more com-
plex descriptions of the systems. For such systems, I focused on the promising linear
parameter-varying or Takagi-Sugeno model representations, which in principle can
adapt the advantages of linear time-invariant system-based design to nonlinear sys-
tems.

However, the control and estimation problems remain highly challenging due to
the computational limitations and conservatism of existing methods. I have reduced
this conservativeness by incorporating knowledge of the structure of the model in the
design methods. My recent work focused strongly on design methods for systems
exhibiting a structure, such as distributed, switching or with specific interconnec-
tion structure, with the goal of incorporating the known structure in the design steps
and in this way reduce the conservativeness of the conditions for computing the con-
troller. Furthermore, recently I have considered the development of local results –
thus starting the transition to general nonlinear systems.

In my future work I will rely on my expertise in the analysis and development of
both control and estimation methods for nonlinear systems, particularly in the Takagi-
Sugeno framework. I plan to develop a comprehensive set of algorithmic tools for the
automatic observer and controller design for a wide array of systems, accompanied
by analytical performance guarantees, as well as by practical applications. These
results will serve as a solid platform from which to explore new directions.
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13.2 Research plan

As a general theme for the upcoming three to five years, I will start from the research
presented in this thesis. The following major topics will be addressed:

• Adaptive observers for control

I am planning to study adaptive observers both for parameter identification and
unknown input estimation. This line of research would be based on the idea of
building a model for estimation purposes, instead of in order to control it, as
is done in indirect adaptive control. The observer is in effect designed based
on the model built. This can also be seen as evolving fuzzy systems. However,
one of the shortcoming of the evolving systems is that, due to the membership
functions used they require pruning of the rules. To avoid this, I propose the
parameterizations of the rules, in effect the membership functions, such that a
given nonlinear system, defined on a compact set can be represented using a
minimum number of rules.

• Networked control

Networked systems are becoming extremely important in todays world: com-
munication networks, power and transport grids, decentralized computing net-
works, and social networks are just some examples of such systems influencing
everyday life. Such systems present several challenges, among which packet
losses, delays, bandwidth limits, etc. In the last few years several results have
been developed using a Takagi-Sugeno representation of networked systems,
usually employing a Lyapunov-Krasovskii functional with multiple integrals.
The conditions generally require an upper bound on the derivative of the mem-
bership functions, which will need to be verified a posteriori. Thus, I will
investigate whether the conditions on the upper bound or similar ones can be
included in the design, leading to a local result, but without the need of further
verification.

• Controllability and observability

Current approaches for both observer and controller design in fuzzy systems
(or, more general in multiple-model approaches) rely on the observability/ con-
trollability of the local models, not on the properties of the nonlinear system.
Depending on how the local models are obtained, their properties may have
nothing in common with those of the underlying nonlinear system. A topic
of interest is to investigate under which conditions are the same properties ob-
tained and/or develop a constructive method to obtain an exact multiple-model
representation that also preserves the properties of the nonlinear system.

• Applications

One of my goals is to apply the results of my research in practice. I have
already been involved in several applicative projects and many of the topics
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are strongly motivated by practical applications. For instance, in machine tool
and manipulator applications, the cutting force exerted by the tool or the ex-
erting force/torque of the robot is of interest, but is very difficult or expensive
to measure (Corless and Tu, 1998; Ha and Trinh, 2004). Load estimation in
e.g., electricity distribution networks (Sheldrake, 2005) or wind turbines (Li
and Chen, 2005) is necessary for proper planning and operation. In biome-
chanics, the myoskeletal system can be regarded as a dynamic system, where
segment positions and trajectories are the system outputs and joint torques are
the non-measurable inputs (Guelton et al., 2008). Examples of networked sys-
tems which require distributed estimation and control include sensor networks,
multi-robot teams, adaptive optics, electrical power plants and petrochemical
processes, traffic networks, energy and water infrastructures, etc.

I will validate the fundamental and algorithmic contributions described above
in real-life case studies. Cooperation with industrial partners will be sought,
with the longer-term goal of commercial deployment.

13.3 Long-term research goals

On the longer term, I wish to develop a unified framework by bridging the gap be-
tween fuzzy, linear parameter varying, piecewise linear, etc. systems and make the
leap to general nonlinear systems. I will have built a strong research group that is able
to develop mathematically rigorous research that has also practical attractiveness. I
will continue attracting and recruiting top undergraduate students, and I will exploit
public funding opportunities at the national, European, and international levels, as
well as industrial funding with local and international companies. Although the main
focus will be on fundamental research, applications to domains such as robotics,
transportation, medical treatment, etc. will also be made clear, such that the research
attracts funding from both industry and funding agencies.

Although the background in fuzzy systems provide a good starting point, I do
not see my research interests limited to this area. In fact, with the knowledge that I
developed in the last years I am already looking at new research opportunities in the
broader systems and control field.
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