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Chapter 1

Introduction

This chapter introduces the main domain in which the habilitation thesis is enrolled
highlighting the motivation of adopted approach. Besides the general overview of
the depth sensing and processing techniques, the special focus on position estima-
tion for mobile robots domain is introduced. After this, the contributions of this
work are shortly described. Finally the thesis outline and structure is shown.

1.1 Problem Description and Motivation

The 3D perception of the surrounding environment is still an important research
field for both the industrial and research community. There are several potential
applications for this domain, mainly from the fields of urban surveillance, path
planning and cultural heritage conservation. Each individual application requires
a specific handling of the acquired data sets. Although certain applications in the
mobile robotics domain require real time data processing, e.g. dynamic perception
and planning, the post-processing of data is sufficient for our pipeline.

Several sensors can be used for the acquisition of data, such as stereo cameras,
laser range finders, or the recent structured light sensors. These devices have their
own special characteristics in terms of precision, range and speed. Thus the way in
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1.2 2D-3D Object Recognition and Position Estimation

which these sensors are chosen depends on the specific requirements of the mea-
surement problem to be solved Scharstein & Szeliski (2002).

Relatively large areas, such as indoor spaces for offices, require several different
measurements to be aligned in the same coordinate frame. This kind of problem is
well studied in the 2D space, mainly in the image processing domain. Although
these 2D algorithms can be adopted for the registration of 3D data, they need spe-
cial adaptations. Also, characteristics such as range, noise, or distribution have a
large influence on the algorithms used for 3D data processing, pose estimation and
including the registration of point clouds.

1.2 2D-3D Object Recognition and Position Estima-
tion

1.2.1 2D-3D Object Recogntion

Our target application was an object recognition system based on 2D CNNs Krizhevsky
et al. (2012) and 3D pose estimation. The combination of 2D state-of-the-art sys-
tems with 3D features carries great possibilities Lahoud & Ghanem (2017). Clearly,
in order to use this technique, not only the RGB images are needed, but also their
corresponding depth images. We implemented a system, that does not rely entirely
on 2D or 3D features, rather combines them and extracts the most important seg-
ments. This system is able to provide good results even when the available compu-
tational resources are limited. Since our main goal was to use it on mobile robots,
the processing power cannot be compared to a computer’s GPU, such as in case of
dedicated servers.
We also tested how do different neural network frameworks perform when the same,
lightweight dataset is used. The comparison highlights the advantages and draw-
backs of each, regarding the domain of object recognition for mobile robot applica-
tions.
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1.3 Thesis Outline

1.2.2 2D-3D Data based Pose Estimation

There is a considerable research effort invested in autonomous car driving projects
both on academic and industrial side. While for the specific scenarios such as high-
ways there are already a number of successful applications, this topic is still gen-
erally not solved for complex environments such as the urban ones Geiger et al.
(2014); Lin et al. (2013). The recent developments in the autonomous driving in
urban environment using a great variety of close-to-market sensors including differ-
ent cameras put into the focus the need for information fusion emerging from these
sensors Furgale et al. (2013).

One of the most challenging issues for the pose estimation is the fusion of in-
formation from different cameras.

In this thesis a short overview is given for the patch based 2D-3D data fusion for
non-conventional 2D cameras and 3D lidar sensors emerging from different sources
in a single step automatic manner based on our previously published papers Tamas
& Kato (2013a); Tamas et al. (2014). The main contribution is the formulation of
the calibration problem as a general 2D-3D non-linear registration problem which
works without special targets or established point matches. The registration is ac-
complished by solving system of nonlinear equations based on the idea of Domokos
et al. (2012).

1.3 Thesis Outline

This section presents the thesis structure. The chapters are organized in a linear
manner including the depth data processing, 3D mapping, pose estimation and their
applications in the robotics field.

Each of the chapters covers a theoretical introduction with simulation / exper-
imental results. Thus, Chapter 2 introduces the 3D sensors for the mobile robot
applications. The data processing as well as map creation alogrithms are presented.

The Chapter 5 presents the object recognition related subject for depth only data

4



1.3 Thesis Outline

and for 2D-3D heterogeneous data as well. The real life experimental validation of
the proposed methods is presented at the end of this chapter.

Chapter 5 presents the fundamentals of the pose estimation for 2D-3D sensors
based on pathces. This is mainly a theoretical presentation, but at the end of the
chapter synthetic and real data results are presented for validating the discussed
algorithms.

As a final validation of the ideas presented in the earlier parts, experimental
results are shown in Chapter 5 from different robotics related applications including
flying, dual-arm and mobile robots as well.

Finally the thesis is concluded with Chapter 5 the discussion upon the results of
the experiments and the possible future extension of the topics.
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Chapter 2

Spatial Data Processing

This chapter introduces the depth sensors for the mobile robots, through what infor-
mation about the surrounding word is gathered in form of Eucledian coordinates.
Nowadays, due to the increasing complexity of the autonomous systems, the greater
demand to achieve good accuracy in the position estimation motivates the interest
in the 3D sensing technology. The position measurement of the robot can be per-
formed using various sensors returning either absolute or relative position informa-
tion.

In the first part of the chapter are presented general concepts regarding the 3D
sensing and data processing including the design details of a custom 3D scanner
used for the applications as well. Further on, 3D map creation related parts are
presented including the keypoint-feature extraction and map registration topics. Fi-
nally, the chapter is concluded with practical aspects of the presented algortihms
Tamas & Goron (2014).

2.1 Introduction

The 3D perception of the surrounding environment is still an important research
field for both the industrial and research community. There are several potential
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applications for this domain, mainly from the fields of urban surveillance, path
planning and cultural heritage conservation. Each individual application requires
a specific handling of the acquired data sets. Although certain applications in the
mobile robotics domain require real time data processing, e.g. dynamic perception
and planning, the post-processing of data is sufficient for our pipeline.

Several sensors can be used for the acquisition of data, such as stereo cameras,
laser range finders, or the recent structured light sensors. These devices have their
own special characteristics in terms of precision, range and speed. Thus the way in
which these sensors are chosen depends on the specific requirements of the mea-
surement problem to be solved Scharstein & Szeliski (2002).

Relatively large areas, such as indoor spaces for offices, require several different
measurements to be aligned in the same coordinate frame. This kind of problem
is well studied in the 2D space, mainly in the image processing domain. Although
these 2D algorithms can be adopted for the registration of 3D data, they need special
adaptations. Also, characteristics such as range, noise, or distribution have a large
influence on the algorithms used for 3D data processing, including the registration
of point clouds.

Different algorithms can be used for iterative map registration, including key-
point and feature extractors, nonlinear correspondence estimators or odometry based
approaches Magnusson et al. (2007). Although the data merging can be performed
based only on the odometry information, this kind of registration is prune to fail
due to the error integration characteristics of the odometers Kaushik et al. (2009).
Hence a more robust method is applied for the initial alignment phase based on an
extracted keypoint–feature data set proposed in the work Zhang et al. (2008). A
similar version of this approach was adopted for the registration stage in the article
at hand focusing on the iterative registration without explicitly making use of the
loop closure data. Further on, for the different data sets, specific features and their
correspondences among them are evaluated.

A certain environment is scanned from multiple viewpoints. These point clouds
are then registered using an ICP-based algorithm applied in two stages: (i) initial
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alignment: only for filtered set of correspondences, usually a fast process; and (ii)
refined alignment: using the complete data sets, being a time consuming but accu-
rate variant. The assumption is that the registered cloud is not axis aligned, thus
having a random coordinate system. Since the approach relies on accurate align-
ment with real-world axes, this method transforms the cloud in two steps: (i) initial
guess: using normals of dominant planes to compute the axes; and (ii) correct align-
ment: where basic features from indoor environments are used to determine the fi-
nal axes. During this process the planar surfaces are segmented and the boundary
points for each plane are computed. Quadrilateral shapes are then fitted to each set
of boundaries. These shapes will tell us the positioning of walls and components
such as doors and windows. After inspecting the sizes of these rectangle-like shapes
and determining the relationships between them, the method can start assigning a
class or label to each point.

The main contributions presented in this chapters are as follow:

• development of a robust framework for iterative map registration based on the
combination of different keypoint feature pairs from the main literature;

• validation of the iterative registration method on different data sets including
indoor and outdoor variants;

• a straightforward and reliable method of estimating the principal axes of 3D
complete indoor data sets;

• improved hierarchical model fitting by clustering the models’ inliers, and re-
taining only consistent clusters as final models;

• a simple and reliable set of rules for labeling indoor components, without the
use of any training classifiers;

• procedure for estimating quadrilateral-like forms, which are needed for the
proposed labeling process of 3D points.
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2.2 Related Work

The perception of environments is a current topic for several research works es-
pecially in the field of robotics perception Nüchter & Hertzberg (2008); Rusu &
Cousins (2011b); Tamas & Goron (2012). Further more, the data registration issues
are treated in different works using various approaches, such as planar patch match-
ing Pathak et al. (2010b), keypoint-descriptor pairs for the depth information Rusu
et al. (2010a) or even heterogeneous data fusion including RGB data in the works
Kaushik et al. (2009); Tamas & Majdik (2012a).

A good example of creating the surrounding environment is given in Kasinski &
Skrzypczynski (2001). The authors are concentrating on the distributed mapping of
an environment, where the application is an industrial one, e.g. a shared floor in a
warehouse. In comparison to ours – which is intended for understanding the human
indoor environment, such as kitchens, offices, hospitals – the application presented
in Kasinski & Skrzypczynski (2001) is closer to business and enterprise.

Several research work deal with the estimation of the precision of the registered
3D maps. This is valid for both the loop closure based mapping process (also re-
ferred as simultaneous mapping and localization) May et al. (2009); Strasdat (2012)
and the iterative registration based mapping Hervier et al. (2012); Magnusson et al.
(2009) without closuring the loop during the mapping.

In Nüchter & Hertzberg (2008) the authors propose a so-called scene interpre-
tation method for labeling the walls, floor, and ceiling. This approach relies only
on the segmentation of planar patches using the RANSAC (Random Sample Con-
sensus) Fischler & Bolles (1981) algorithm. Further identification of indoor com-
ponents is obtained using a rather complex recognition pipeline.

The authors in (Rusu et al., 2008) are presenting a similar approach to the one
described in this article, at Section 2.5. They also use 2D quadrilaterals to detect
rectangular shapes, but under the assumption that the points are axes aligned (Rusu,
2009). Based on this assumption the reasoning about the environment becomes
more accessible. Also, from the article it was understood that the so-called cuboid
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fitting was applied only for that particular kitchen data sets.
Regarding to door detection, there has been done some very interesting work,

such as (Murillo et al., 2008) where authors use computer vision to classify pixels
using a somehow smaller set of classes that the one presented in this work. Although
the results look good, the performance can be easily affected by changing light con-
ditions. Also by using only image processing, robotic applications which require
3D information cannot be supported. Another work on door detection is (Morisset
et al., 2009) where the developed system is accurately detecting and opening doors.
Unfortunately, the authors have applied it only on doors and handles that are con-
form to ADA (American Disability Act) U.S. law, thus suggesting that the system
might not comply for other types of doors.

In addition, there was very little to be found on indoor window detection, this
application being more common for outdoor processing of buildings. Nevertheless
in (Tuttas & Stilla, 2011) a method is presented for detecting windows from outdoor
scans, using indoor points. The authors also rely on the detection of dominant
planes, being considered most representative. Using the indoor points, meaning the
points which lie inside the buildings, and which were obtained by the laser beam
going through the windows into the building, the authors estimate the positions of
windows.

In Silva et al. (2012) the authors give an extensive overview over the latest appli-
cations in the area of intelligent homes, such as child and elderly care, surveillance,
or even the optimization of energy usage. Although the applications summarized
in Silva et al. (2012) are relevant to the applied engineering field, robotic applica-
tions are underrepresented in this work. We believe that “smart homes” should also
incorporate “smart agents”, such as personal or service robots, which can interact
autonomously with the environment Papadakis (2013).
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2.3 3D Scan Preprocessing

Several range scans are necessary in order to build a 3D elevation map of the en-
vironment. To use these scans as a coherent data set, they have to be unified in a
common coordinate frame. Unless the position and orientation of the mapping robot
is accurately known, the range scan registration needs to be done using specialized
algorithms Nagatani et al. (2009). Since in our case the robot position could not
be determined with a sufficient accuracy between the measurement steps, the regis-
tration algorithms were employed for creating the elevation maps Tamas & Goron
(2012).

The problem addressed in this section deals with an iterative scan registration
without explicitly requiring or performing the loop closure. Similar benchmarking
and approaches were tested for fusing different additional sensors in the work of
Hervier et al. (2012), or dealing with normal based information registration pre-
sented in Magnusson et al. (2009).

2.3.1 Data Acquisition

There are several possibilities to acquire 3D information from the surrounding en-
vironment. The measurement methods can be divided into 3 major categories based
on applied sensor and sensing technology: stereo vision (with two or more cam-
eras) Morisset et al. (2009), active triangulation Ohno et al. (2010) and time of
flight measurements. One of the most precise time of flight measurement systems is
based on the laser scanners; however it is the most expensive one. A cheaper variant
is the stereo camera, with less precision in the depth estimations or the structural
light approaches Khoshelham & Elberink (2012).

In our experiments the data sets were recorded at normal light conditions for
spaces ranges between a few cm up till 80m. The scanning of the environment with
a custom 3D laser scanner mounted on the P3-AT mobile robot was performed in
a stop-scan-go fashion. The core part of the 3D scanner is a Sick LMS200 planar
scanner augmented with an additional mechanical part in order to gain the third
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degree of freedom for the data Tamas & Goron (2012). A single scan takes up
to 60 seconds depending on the used sensor configuration. The resolution of the
used custom 3D scanner was 0.25◦ in yaw and 0.5◦ for the tilting while the depth
absolute error was less than 1cm. All the measured data was integrated in the ROS1

environment where each logging was timestamped for an easier off-line processing
Goron et al. (2010a).

2.3.1.1 Data Acquisition from Custom 3D Laser Ranger

For a scanner with pitching actuator the 3rd dimension of a point is given from the
pitch angle. The coordinates of one 3D point result from the distance to the surface,
the yaw angle of the beam, and the pitch angle of the actuated mechanical part.
Thus a scanned point can be represented as a tuple of the form (ρi;θi,γi) where ρi

represents the depth information from the laser scanner and θi,γi the yaw and pitch
measurements. The forward kinematic transformation taken as original coordinate
system to the laser base link is given by:

p =

 xn

yn

zn

=

 cosγ 0 sinγ

0 1 0
−sinγ 0 cosγ

×
 ρ cosθ

ρ sinθ

0

 (2.1)

where p is a point in the Cartesian space with the coordinates xn, yn and zn.
The key component of the 3D sensor is the 2D commercial laser scanner for

which a custom rotary platform was designed. There are several possibilities to
rotate the laser scanner, i.e. around the yaw, pitch or roll axis, thus achieving a
yawing, pitching or rolling 3D sensor Wulf & Wagner (2003). Each of these three
setups has its own advantage and disadvantage. As for mobile robots the most
common approach is the pitching scan, which was adopted for the current system.
The mechanical design and prototype are presented in Figure 2.1. The design shown
has two parts: one fixed containing the driving servo motor (left) and the rotation

1http://www.ros.org/
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encoder (right); and the mobile rotary on which the Sick LMS200 is placed. The
prototype was built using an iron frame both for the fixed and mobile part Goron
et al. (2010b).

Figure 2.1: The design and prototype of the actuated 3D sensor.

2.3.2 3D Keypoints and Descriptors

There are several possibilities for extracting interest points and descriptors from
2D images including the popular SIFT (Scale Invariant Feature Transform) Lowe
(2004a) or the SURF (Speeded Up Robust Features) Bay et al. (2008) features.
Unfortunately, these rely on local gradients from a unique orientation and therefore
are not directly applicable for our approach with 3D data, however some concepts
may be inherited from the 2D domain.

In this article the Normal Aligned Radial Feature (NARF) Steder et al. (2010)
keypoints were adopted for the extraction of interest points from range images. This
type of keypoint takes into account the information about the borders and surfaces,
ensures the detection from different perspectives and the stability for the descriptor
computation. The most important parameter for the NARF extraction is the support
size, i.e. the diameter of the sphere in which the interest point characteristics are
determined Steder et al. (2011). In our case several values for this parameter were
tested in order to gain a sufficient number of keypoints for different types of data
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sets. After the selection of keypoints was completed, the specific properties are
determined, i.e. the descriptors for the set of extracted keypoints.

For our approach we used the optimized version of the FPFH descriptor in order
to augment the three dimensional space with pose-invariant local features and also
tested the NARF descriptors with Manhattan metrics as fitness score for the same
set of keypoints. To compare the two set of descriptors, the runtime (T) in seconds
and the initial alignment fitness score (S) was computed for indoor (Id) and outdoor
(Od) data sets. The result of the comparison is summarized in the Table 2.1.

Table 2.1: Feature descriptor comparison

Dataset TNARF TFPFH SNARF SFPFH
Idcluttered 0.19 45 0.071 0.032

Idplane 0.12 12 0.094 0.057
Od 0.11 26 0.083 0.044

The tests were performed on data sets containing around 10K points for which
the extracted number of keypoints was in the magnitude of 0.1K. For computing the
runtime the average values were considered for 10 batch runs on an Intel Pentium
4 single core laptop running Ubuntu Linux. Although the run-time of the proposed
algorithm is higher than some custom scenario based approaches such as the one
presented in the work Kaushik et al. (2009), the degree of generality of the current
approach is higher.

As observed, NARF descriptors are computed with several orders of magnitude
faster than FPFH descriptors, but the latter approach is more robust in terms of
estimating correspondences. This would be also the case for scenes which present
less clutter or variation, thus having less discriminative features, where the FPFH
features ensured a better correspondence between points.

14



2.3 3D Scan Preprocessing

2.3.3 3D Features for Stereo Images

2.3.3.1 Principle of Stereo Image Depth Extraction

The stereo cameras are popular tools for creating 3D coloured data based on two or
more images recorded from different camera positions. In order to recover depth
information from 2D images correspondences have to be established between pixels
of the left and right image of the stereo pair, representing the same object in the
scene.

Numerous algorithms are focusing on finding correspondences 1. Generally
speaking to obtain better precision more complex algorithms are applied resulting
in a higher computational effort.

In many applications there is no need of a dense reconstruction for all the pixels
in the image. In these cases is sufficient to use only some points, namely to ap-
ply image feature detectors Majdik et al. (2010). Image features capture relevant
distinctive information in images that can be repeatable detected under different
lighting conditions, angle of view and scale increasing thus the robustness of the
algorithm.

One of the fastest methods to compute dense disparity maps form stereo im-
ages is based on correlation analyses. Using this method the depth is computed
at each pixel, a grey level around the pixel in the left image is correlated with the
corresponding pixel in the right image. The disparity of the best match from the
correspondence is determined using the Sum of Absolute Differences (SAD).

Image feature descriptors can be also used in order to generate dense depth
maps. In such a scenario for every pixel in the image a complete descriptor is
computed. Afterwards the corresponding pixel is searched in the other image of the
pair by comparing the feature descriptors.

1Two-frame stereo algorithms: http://vision.middlebury.edu/stereo/
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2.3.3.2 Enhanced Stereo Image Algorithm

From the numerous image feature descriptors presented in the literature Daisy Tola
et al. (2008) was chosen in order to compute the 3D point clouds presented in Fig-
ure 2.3. The Daisy descriptor has several advantages over other popular methods
such as: SIFT Lowe (2004a) or SURF Bay et al. (2008). It can be computed very
rapidly for all the pixel of an image. In our experiments for 640x480 pixels the
computational time was around 3.2s using a standard PC. Also the Daisy descriptor
has better precision than other image feature descriptors according to the literature
Tola & Lepetit (2010).

The processing pipeline consist of several phases as follows: (1) capture the
stereo image pair; (2) rectification and aligning of the images; (3) compute the
Daisy descriptor for every pixel of the left, respectively right image; (4) for every
pixel of the right image search for the corresponding one in the left image, the search
is performed on the same line from the minimum disparity (10 in our experiments)
to the maximum disparity (respectively 40); (5) select the best match by comparing
the descriptors, resulting the disparity (for some pixels the disparity could not be
found); (6) using the stereo geometry of the vision system and triangulation com-
pute the real world XYZ coordinate for the pixels; (7) get the RGB colour and save
the point cloud shown in Figure 2.3.

2.3.3.3 Robust Coloured Point Cloud Features Correspondence

For the RGB-D datasets SIFT3D type keypoints were considered, while for the
local descriptors both the NARF and FPFH variants were tested. As in the case
of the laser range data, the FPFH proved to be more robust to the rotation type
transformations. For the translations the performance of the two type of descriptors
were similar.

The output of the feature estimation and the correspondence estimation for the
SAD stereo algorithm is shown in the Figure 2.2. As it can be seen, the correspon-
dences are valid for this type of algorithm, although the quality of the 3D point
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cloud is rather noisy.

Figure 2.2: Feature matching for coloured point cloud from stereo camera with
SAD algorithm

The results of the feature estimation for the Daisy stereo image processing is
shown in Figure 2.3. For this case, the generated 3D coloured point cloud has less
distortions, although it has depth discontinuousness for ranges above 2m. Also in
this case the keypoint-descriptor pairs have less false correspondences as in the case
of the SAD stereo imaging algorithm.

2.3.4 3D Features from Structured Light Camera Images

2.3.4.1 Principle of Depth Measurement via Triangulation

The Kinect RGB-D camera captures infrared and RGB data from the same scenario.
It has also an infrared emitter, which is used for structural light projection on the
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Figure 2.3: Feature matching for coloured point cloud from stereo camera with
Daisy algorithm

scene as this is described by the inventors in Freedman (2010).
The projected pattern is captured by the infrared camera and is spatial correlated

with the reference one. The effective distance measurement is done on the principle
of computing the distance between the reference points from the emitter and the
ones received at the infrared sensor via a triangulation using the known baseline
distance between the emitter and the receiver.

Further on the depth image and the RGB data can be fused by using a calibration
based on the fixed parameters of the camera. The main error sources for this device
are related to the lighting conditions of the measured scene, as for strong lighting
(e.g. sun) the projected infrared pattern have low contrast. This is also the main
reason for the indoor usage limitation of this type of sensor.

18



2.3 3D Scan Preprocessing

2.3.4.2 Feature Correspondence Filtering for Kinect RGB-D Data

We tested different keypoint-descriptors for this type of RGB-D data including
NARF, SIFT3D and FPFH ones. The best computational effort and descriptor per-
formance was obtained for the SIFT3D keypoint and FPFH feature descriptor pair.
For this type of setup the result of the algorithm is shown in Figure 2.4, which
shows two recordings which were taken from the same scenario with the second
scene rotated with 30deg to the base one.

Figure 2.4: Feature matching for coloured point cloud from structured light camera,
unfiltered correspondences.

Further on, the SAC based filtering of the correspondences gives a reduced set
of feature pairs as this is visible in Figure 2.5. The original correspondence pairs
were reduced from 56 to 11. This was done by computing both the back and forth
correspondences between the source and target datasets.

For both cases the original RGB-D point cloud was filtered by using a voxel-
grid filter in order to reduce the measurement noise in the data and to have a more
compact dataset Rusu & Cousins (2011c).
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Figure 2.5: Feature matching for coloured point cloud from structured light camera,
filtered correspondences

2.4 3D Data Registration

2.4.1 ICP-Based Registration

The registration problem can also be viewed as the optimization of a cost function
describing the quality of alignment between different scans. The algorithm deter-
mines the rigid transformation which minimizes this cost function Surmann et al.
(2001). The type of algorithm applied for the frame alignment strongly depends
on the measured data set type. For the 3D laser scans the Iterative Closest Point
(ICP) and derivatives are popular in the field of robotics Besl & McKay (1992);
Nuechter (2009); Pathak et al. (2010b). The ICP computes the rigid transformation
which minimizes the distance among two point sets by associating a point from one
frame to the closest point in the target frame. The transformation between two in-
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dependently acquired sets of 3D points consists of two components, a rotation R
and translation t. Correspondence points are iteratively searched from the model
set of points M (with |M|= Nm) in the data set D (with |D|= Nd). In case of a valid
correspondence we need the transformations R and t which minimize the distance
between the two points as follows:

E(R, t) =
Nm

∑
i=1

Nd

∑
j=1

wi, j||mi− (Rd j + t)||2 (2.2)

where wi, j is assigned 1 if a valid correspondence is found between the ith point
from M denoted with mi and the jth point from D denoted with d j.

Different variants were developed in order to increase the robustness and the
performance of the algorithm especially for computing the rotational transforma-
tion term, which introduces a non-linear term in the minimization problem. A
comprehensive overview and qualitative evaluation of different approaches for the
registration problem can be found in Salvi et al. (2007).

A common approach for boosting the ICP robustness is the augmentation of
the points with additional features such as point color, geometric features or point
histograms Sharp et al. (2002). This transposes the optimization problem in a higher
order dimensional space search. These features are usually computed only for a
certain subset of interest points from the original point cloud, i.e. keypoints in order
to reduce the computational effort and enhance robustness.

The use of keypoints is to enable the efficient comparison between different
data regions. Our approach for the data registration is based on the correspondence
estimation for the extracted keypoint features.

2.4.2 Correspondence Estimation

The next step after determining the keypoints and the descriptors is the estimation
of correspondences between the two sets of keypoints with descriptors. There are
several methods for the correspondence estimation, such as one-to-one, back and
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forth or sample consensus based Pathak et al. (2010b).
In our approach the correspondence estimation was performed based on the ge-

ometric constrains of the selected points. Thus the nearest point in the high dimen-
sional descriptor space was searched by using a kd-tree for enhancing the search
speed Bentley (1975). Unfortunately, the brute force search does not ensure a co-
herent result for the correspondence estimation problem having in many cases a
large number of false positives.

For improving the estimation results, the filtering based on sample consensus
was adopted. This ensures that after performing the one-to-one search for descrip-
tors, only those correspondences are kept which satisfy a geometrical transforma-
tion constrain.

(a) (b)

Figure 2.6: Initial correspondences (a) and filtered correspondences (b).

The comparison of the unfiltered and filtered set of correspondences is shown
in Figure 2.6 on an indoor data set. This data set contains two scenes, the original
one and the one rotated with 45◦. As it can be observed, the initial, unfiltered set of
correspondences contains a large number of false positives, which are eliminated,
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yielding a more consistent estimation. The number of final correspondences depend
on the parameters used as a threshold for the sample consensus rejection.

The complete ICP-based algorithm can be found in the works Besl & McKay
(1992); Zhang (1992), therefore only a short overview is given, with emphasis on
the additional descriptor information for the points. The algorithm has two input
point clouds, Ps for the source and Pt for the target. Step 1 and 2 extract the FPFH
of the source and target clouds (these two steps can be substituted with arbitrary
point cloud feature search), while in Step 3 the initial alignment t∗ is determined
after the correspondence filtering. In the while statement in each iteration a set
of associations Ad is taken for which the best transformation is determined. The
loop exit conditions are related to the error variation or to the maximum number
of iterations both specified as tuning parameters for the algorithm. Finally, the
algorithm returns the computed transformation between the two data sets. Further
details regarding the implementation of the ICP with initial alignment based on
sample consensus can be found in Morisset et al. (2009).

The aligned map for the indoor and outdoor environment is presented in Figure
2.7. In both cases the registration was performed using a pair alignment approach
and the FPFH descriptors for the computed NARF keypoints. The initial alignment
of the scans was performed based on the filtered correspondences of the FPFH de-
scriptors. This alignment was then used for the ICP refinement, computed on the
last pair of data in the alignment loop.

For the presented scenarios the error convergence of the ICP algorithm was
monotonically decreasing, a suitable registration error was achieved in less than
100 iterations. This scenario was obtained by considering the maximum distance
between two neighbor points to be less than 1m.

For evaluating the different ranging devices, the data captured needs to be trans-
formed in a common coordinate frame. In our case the mobile robot platform on
which the sensors were mounted was considered to be the origin of this common
coordinate frame. With this assumption, the change in the orientation and position
of the platform needs to be estimated from the different correspondences.
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(a) (b)

Figure 2.7: Example of registered indoor map(a) and outdoor registered map(b)

For the correspondence evaluation metric first a rigid transformation based on
the correspondences between two different point clouds is determined. This trans-
formation is compared against the reference transformation between the two mea-
surement coordinates. The reference point cloud is determined via the fine tuning of
the 3D point cloud from the laser range finder, as this offers a precision under 1cm in
an indoor environment. The fine tuning is done by applying a iterative closest point
(ICP) algorithm to the initially aligned laser point cloud based on the information
from the correspondence estimation Besl & McKay (1992).

By taking the normalized point cloud distance between the different rigid trans-
formation estimation, the evaluation of the different feature correspondence estima-
tion is performed. According to this idea, evaluation of the heterogeneous feature
sets were tested, by means of fusing the range feature set with the kinect and the
ones extracted from the stereo imaging. Also other combinations of the feature set
are proposed within this framework. In order to reduce the false correspondences, a
sample consensus based filtering is applied to the heterogeneous feature set Pathak
et al. (2010a).

The reference transformation is computed based on a FPFH type descriptor for
the laser data recorded at two different positions as this is listed in the Algorithm
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2.1. First the Fs and Ft descriptors are computed for the source and target datasets,
which are used for the initial alignment guess for the ICP. The ICP based registration
with a sufficiently good initial guess serves a high precision registration for a laser
ranger 3D data set. The final ICP transformation tre f is returned as the reference
transformation for the feature based correspondence rigid transformation estimation
Tamas & Majdik (2012b).

Algorithm 2.1 ICP with initial alignment for reference
Input: Ls, Lt

1: Fs = ComputeFPFH(Ls);
2: Ft = ComputeFPFH(Lt);
3: (tinit ,C f ) = InitialAligment(Fs,Ft);
4: while (errordi f f < ε)or(iteration < iterationmax) do
5: Ad = getClosestPoints(tre f ,Ls,Lt);

6: tre f = argmin
(

1
|Ad |∑ j∈Ad

w j |t(ls)− lt |2
)

;
7: end while
8: return tre f

The proposed feature evaluation algorithm is presented in Algorithm 2.2. In
the first part of this algorithm the 3D features descriptor Ds and Dt are computed
for both input point clouds. In the next step the correspondences are evaluated
and filtered out based on a sample consensus framework. Finally, the normalized
distance Ed for the estimated transformation tc and the reference tre f is determined.

Algorithm 2.2 Correspondence estimation
Input: Ps, Pt , tre f

1: Ds = Compute3DFeatures(Ps);
2: Dt = Compute3DFeatures(Pt);
3: (tc,C f ) = SACFilterCorrespondences(Ds, Dt);
4: Ed = 1

|C f |∑ j∈C f
w j
∣∣tre f (ps)− tc(ps)

∣∣2;
5: return Ed
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2.4.3 Performance Evaluation on Lidar data

The registration performance evaluation problem is an actual topic for the robotics
community. Several recent works are focusing on this problem presenting different
benchmarking variants including one iterative registration evaluation Censi (2007);
Magnusson et al. (2009) or the popular global optimization with loop closure Huitl
et al. (2012); Kümmerle et al. (2009); Strasdat (2012). The covariance estimation
for the registration is also an important aspect which gives an information about the
confidence of the registration result as this is highlighted in the work of Hervier et
al. Hervier et al. (2012).

In order to characterize the quality of the registration beside the registered error
the covariance of the estimate is also important for mapping purposes. The ICP can
be seen also as a least-square estimator which has as error bound the Cramer-Rao
bound defined as N = cov(x̂) = [I(x)]−1 where x̂ represents the estimate of x and the
I(x) denotes the Fisher information matrix. The later can be rewritten for as

I(x) =
1

σ2

[
∑

i

(
−A2

i Ai

−Ai I3

)]−1

(2.3)

where σ denotes the sensor noise and Ai is the skew matrix composed from the
point coordinates of the ith point as proposed in Hervier et al. (2012). This metric
is also useful, as the singularities of the skew matrix can give a hint of the axes on
which the unobservability condition may arise (e.g. a straight corridor).

As the ground truth is often peculiar to obtain, in order to evaluate the perfor-
mances of the proposed methods a public dataset was considered as a reference
data the Jacobs University campus outdoor data Elseberg et al. (2012) with man-
ual marked ground truth data. As their measurement was also based on lidar the
covariance of the sensor readings was considered σ = 1cm. For benchmarking pur-
poses as a stopping criterion the iteration number of the ICP algorithm was consid-
ered niter = 100, usually this offering sufficient good accuracy for the registration
in a few seconds runtime. In order to compare the performances of the different
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2.4 3D Data Registration

keypoint-feature based pre-aligned scans as output the absolute translation error
and the covariance defined with (2.3) was considered.

The summary of the evaluation run for different pairs of scans from the public
dataset are summarized in the Table 2.2 for the NARF, FPFH and the combined set
of keypoints used for initialization:

Table 2.2: Evaluation of the registration on public dataset.

tx ty tz
ICPNARF 2.70±2.96 2.21±2.74 3.9±4.18
ICPFPFH 1.32±3.08 1.59±2.13 2.71±4.06

ICPcombined 1.21±2.59 1.16±2.97 1.82±3.25

The comparison also in this case reflects the superior results of the initial aligned
with the FPFH keypoints over the NARF ones, while the proposed combined variant
of these keypoints give the best results. This is due to the different characteristics
of the two set of keypoints as well as the larger number, hence more robust initial
alignment with the combined keypoint set. Also it is important to observe that
the absolute errors computed on different axes tend to have significant differences.
This is mainly due to the asymmetrical displacement of the coordinate frames with
respect to the axes, i.e. the largest displacement is towards the z ax on which the
largest errors were measured as well.

2.4.4 Heterogeneous Feature Evaluation

The main idea of the heterogeneous feature evaluation relies in the simultaneous use
of different type of descriptors from different type of data sets, i.e. stereo camera,
Kinect or laser. The motivation behind the use of different feature descriptors is the
enhancement of the robustness for the initial alignment of the rigid transformation
estimation. Also in the case of the stereo imaging - Kinect combination, ensures a
larger range of operation, beyond the limits of the Kinect sensor.
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2.5 Indoor Environment Classification

In our test scenario, we used the different stereo imaging algorithms and the
kinect data for comparing them against the ground truth laser dataset. Four type of
descriptor sets were considered: stereo from SAD, stereo from Daisy, the combina-
tion of SAD stereo with the Kinect and the combination of Daisy stereo with kinect.
In the case of the RGB-D data, SIFT3D keypoints were considered. These showed
to be more powerful than the NARF ones for the colored 3D data.

In Table 2.3 the results of the heterogeneous keypoint-descriptor pairs are shown.
The initial estimate for the SAD stereo algorithm is compared to the Daisy one and
to the combined SAD-Kinect, Daisy-Kinect sets. The Daisy correspondences re-
turned a better transformation than the SAD, while the SAD-Kinect combination
over performs both stereo algorithms. The best performance was obtained for the
Daisy-Kinect pair in terms of differences from the reference point cloud transfor-
mation obtained from the 3D laser scanner considered as reference in our test cases.

Table 2.3: Heterogeneous 3D feature descriptor performance comparison

Name SAD Daisy SAD−Kinect Daisy−Kinect
Error 0.13 0.10 0.094 0.081

The tests were performed on datasets containing around 104 points for which
the extracted number of keypoints was in the magnitude of 102. For computing the
runtime the average values were considered for 10 consecutive runs on a P4 single
core laptop running Ubuntu.

The test datasets were recorded indoor at natural lighting conditions, the trans-
formation between the source and target sets being a rotation plus translation type
transformation.

2.5 Indoor Environment Classification

This section describes an integrated method for classifying basic components of
human indoor environments based on their physical features. To be more concise,
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the system records 3D point clouds and after processing assigns a label to each
point according to the class it belongs to. A P3-AT (Pioneer 3 All Terrain) and
PR2 (Personal Robot 2) robot are used for achieving this task. In the following, a
comprehensive overview of the proposed method is given.

2.5.1 Labeling Process

A simple yet robust classification process was implemented, which can be easily
extended with additional component classes if necessary. The goal of the system
was not to rely on any training process but rather use common sense knowledge to
label 3D points. To give some examples of what we understand as common sense
about indoor human environments, please look into Table 2.4.

Table 2.4: Rules for labeling point of indoor environments.

Criterion Description
(i) in the majority of cases the walls inside houses and

buildings form rectangular shapes
(ii) by considering also the floors and ceilings, cuboid

shapes are obtained
(iii) doors are always positioned on the edge of a wall,

very close to the floor
(iv) and if closed, a door is always parallel to its support-

ing wall; the same for windows
(v) windows are always located higher from the floor,

and closer to the ceiling
(vi) furniture pieces are usually placed right against the

walls, being also aligned accordingly

For the time being, the classification procedure uses ten classes, which are also
called labels: (1) floor; (2) ceiling; (3) wall; (4) door frame; (5) door; (6) window
frame; (7) window; (8) furniture; (9) handle; and of course (10) unknown. It might
seem redundant to have such similar classes, e.g. (4) with (5), and (6) with (7),
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2.5 Indoor Environment Classification

but some components are not rigid and are constantly manipulated. Therefore, it is
useful to have a system which can determine the places of those components. The
method might not detect the actual door or window, but will identify the location
where it should be when closed.

2.5.2 Principal Axes Estimation

In this subsection, a technique is described for estimating the principal axes of in-
door point cloud data described in details Tamas & Goron (2014). First, planes are
fit using the RANSAC (Fischler & Bolles, 1981) algorithm, by segmenting the in-
liers of each plane out of the point cloud. For an example of the final fitted planes,
please look at Figure 2.8. This is repeated until the remaining points in the cloud
fall under a certain threshold. The mentioned threshold is set to an empirical value
of 2500 point inliers.

As expected, RANSAC always finds the dominant planes first, meaning the
planes with the biggest number of inliers. Also in many indoor environments most
of the surface normals coincide with one of the three main axes of the room. This
is because most of the walls and furniture surfaces are parallel and/or perpendicular
to each other. Therefore, the idea behind estimating the principal axes is to find
three planes, which can form a right angle between each others normals. The first
step is to compare the normal of the most significant plane with the normal of the
second most significant plane and so on. When a match is found, those plane nor-
mals are marked as axes for the new coordinate system. After the three planes and
their corresponding normals are found, the point cloud is transformed into the new
coordinate system. This was the initial guess stage of the estimation procedure.

Although now the points are aligned with the real-world Cartesian system of
coordinates, the orientation of the three vectors representing the axes are most prob-
ably incorrect, as it can be seen in Figure 2.8. But the method will correct the axes
in the second step, which is described in the following subsection. Also, it is im-
portant to mention that usually only two normal planes which are at a right angle
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(a) (b) (c)

Figure 2.8: Significant stages for the interpretation of indoor environments, where
axes X , Y , and Z, are colored in red, green, and blue, respectively: (a) segmentation
of planar surfaces, where it can be observed that all major planes are segmented
correctly, including the two doors; the coordinate system is not correct, thus having
the axes randomly tilted in 3D space; (b) axes are aligned with the real-world, but
the coordinate system is still not right, i.e. the Z-axis should point upwards, and
not towards the reader; computed boundary points for each planar surface are also
presented; (c) labeling results of the floor (red), ceiling (yellow), walls (green),
door frames (cyan), and doors (blue), plus the corresponding color scaling; axes are
aligned as in the real-world environment.

are needed, since the cross product between the two mentioned normals returns the
third axis.

2.5.3 Quadrilateral Detection

A strategy is here detailed for detecting quadrilateral-like shapes and explain the
reasoning behind the classification process used.

The work is based on the idea presented in (Rusu et al., 2008) although in this
work cuboid fitting was based on four extracted line features while in the current
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paper this requirement is relaxed and only three lines are considered for this pur-
pose. This allows the fitting to be performed on lower density or sparser data too.
This is especially useful for experiments in non-laboratory conditions or with noisy
data such as in our outdoor measurements.

Another major difference between the method presented in (Rusu et al., 2008)
and the current one is the scan area that is considered for classification. While in
our method a whole room is considered, in the original method only a single scan
with limited angle of view is used as data source. Also the number of datasets on
which the experiments were performed make the qualitative comparison difficult,
as in the original work only a single scenario is analyzed while in this paper more
than ten scenes are considered.

The method uses these quadrilaterals to classify points which belong to doors,
windows, or frames, based on their physical sizes and positioning inside the scene.
By using this approach, the classification can be effortlessly extended for other
rectangular-shaped components, e.g. furniture pieces, radiators, or trash bins. But
in order to perform quadrilateral fitting, the method would need to execute these
steps:

1. compute boundary points for each segmented plane previously found;

2. detect line models inside the sets of boundaries using the RANSAC algo-
rithm;

3. analyze line segments to find candidates which can form rectangular-like
shapes.

The planar boundary points are estimated by using the PCL1 (Point Cloud Li-
brary) project. For visualizing the boundaries please take a look at Figure 2.8,
where each plane has its boundaries colored differently. Then the method contin-
ues by fitting lines much similar to the plane segmentation routine presented in the
previous subsection. Whereas here the threshold for lines is set to 25 point inliers,
which is also a value deduced empirically.

1 http://pointclouds.org/
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Quadrilateral fitting is performed by comparing lines between each other to de-
termine if formations of rectangular-like shapes are possible. Finding quadrilateral-
like forms which have right angles is done in an iterative fashion. Each iteration,
a new line segment is checked and if it satisfies certain conditions, it is added to a
quadrilateral configuration as described in Tamas & Goron (2014). A line is added
to a current shape, i.e. rectangular, if two conditions are fulfilled:

(a) at least one, if not both, of the segment’s ends should be in the proximity to
either one of the shape’s ends;

(b) the angle between the newly added segment and the existing one, is of ap-
proximately 90◦, give or take 5◦.

A quadrilateral configuration is obtained when a maximum of four line segments
are found making up a rectangular shape. On the other hand, shapes which have less
than three line segments are rejected. This routine stops when there are no more line
segments to be analyzed. Naturally, the results of this routine are influenced by the
point cloud density, hence more points result in a better accuracy.

After finding the 2D rectangular shapes, the method checks their sizes, to see if
there are any doors or windows. Usually, the doors encountered so far were around
2000mm by 800mm, and windows around 1200mm by 600mm, whereas walls have
a height of around 3000mm. Also, this is not the only criterion by which rectangles
are classified as doors or windows. There is also the positioning of those rectangles
in their supporting quadrilaterals, i.e. usually walls. Therefore, the method checks
also for the relationships between rectangles, i.e. the relative position in comparison
with one another. With the help of this information, the correct alignment of the
coordinate system – please see Figure 2.8 – can be detected.

As an example, think of a smaller rectangle, which is very close to one of the
edges of a bigger rectangle. If that smaller rectangle within the bigger rectangle
has a size close to the system’s thresholds, then it can be asserted that the smaller
rectangle is a door, which lies on the floor, and that the Z-axis should be oriented
upwards in the door’s direction.
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If the normal of the door is then considered, as for example Y -axis, which is
at a right angle with the newly found Z-axis, the cross product can be computed
and the X-axis is obtained. The point clouds is transformed according to the new
axes, and the correction of alignment has been fulfilled. Thus having the real-world
coordinate system, the floor, ceiling, and walls can be determined, as shown in
Figure 2.8, by using a pass through filter along the Z-axis.

2.5.4 Detection of Furniture

Our method is based on similar concept proposed in (Tuttas & Stilla, 2011) but also
incorporates constrains on the position and size of the detected windows. Although
windows and other furniture pieces like pictures or mirrors may have the same sil-
houette, the way that they lay in the plane, i.e. the windows are embedded in the
plane, while the other class of objects usually tumble out from the plane.

The number of furnitures classified in the work (Rusu et al., 2008) is lower
than in the current work, the focus being in a statistical analysis of the proposed
algorithms. The limitation of the current approach are related to the objects classes
which were considered at the design phase for the classifier.

The system extracts relevant planes from the registered point cloud, categorizes
them as doors or drawers, walls, floor, ceiling, and tables or other horizontal struc-
tures. This is achieved by first locating the relevant planar structures, testing for the
existence of fixtures, and segmenting the different doors.

As an exhaustive search for all planes is computationally intractable, the method
is only searching for those that are aligned with the walls of the room. The orienta-
tions of the main walls are determined using a RANSAC-based (Fischler & Bolles,
1981) approach on the normal sphere, as described in (Marton et al., 2010). Since
in many indoor environments, most of the surface normals estimated coincide with
one of the three main axes of the room, these directions can be used to limit the
plane extraction, as it can be seen from Figure 2.9.

After extracting the primary planes, they are classified into floor and ceiling
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(a) (b)

Figure 2.9: Segmentation result of human indoor environment, visualized without
ceiling: (a) 3D data set with highlighted floor; (b) detection of vertical and horizon-
tal surfaces.

based on horizontal orientation and height, and the walls based on the observation
that they are adjacent to the ceiling. The remaining planar connected components –
if they exceed a minimum size – constitute candidates for tables or furniture faces
as suggested in the algorithm Tamas & Goron (2014). This minimum size is the
empirically deduced value of 500 point inliers in herein presented experiments.

Fixtures are detected by first finding point clusters that are within the polyg-
onal prism of the furniture faces using Euclidean distance measure and then fit
RANSAC lines or circles to those clusters and thereby differentiate between han-
dles and knobs. A down-sampled version is used, i.e. voxel size 3.5 [cm], of the
point cloud for speed considerations and to simplify the computation of patch areas.

(a) (b) (c)

Figure 2.10: Detection of important furniture pieces, inside kitchen areas.
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Kitchen appliances, doors and drawers typically have fixtures that allow inter-
action with them. The existence of fixtures is a good indication to the presence
of these objects, so the algorithm searches for clusters of points in the vicinity of
detected vertical planar structures. Since the ultimate goal is the manipulation of
the handles by the robot, clusters that are too big in diameter relative to the grip-
per aperture are discarded. These filters are simple enough to be performed for all
possible clusters and explain all of the fixtures in typical kitchen environments. The
results of this process can be visualized in Figure 2.10.

(a) (b)

Figure 2.11: Obtaining the handles of furniture, which ca be used in grasping appli-
cations.

2.5.5 Experimental Results

The proposed system was tested on several point clouds, recorded inside various
office and kitchen environments. Table 2.5 presents empirical results for 13 different
data sets, out of which 4 are complete scans of rooms, while the other 9 are only
partial scans. These data sets were recorded with two different devices; 8 of them
using a Hokuyo UTM-30LX sensor, mounted on a PR2 robot; and the rest of 5
were taken with a Sick LMS 200 sensor, mounted on a P3-AT robot. Both scanning
devices are fitted with tilting mechanisms in order to attain 3D point clouds.

The obtained results are promising, considering the accuracy values shown in
Table 2.5. Detection of indoor components was achieved by identifying planar
patches and line segments in the above mentioned data sets. The floors and ceilings
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Table 2.5: Detection results presented by individual labels.

No. Label Ground
Truth

Correct
Detection

Accuracy Present in

1 floor 11 11 100% 11 scenes

2 ceiling 11 11 100% 11 scenes

3 wall 53 50 94% 13 scenes

4 door 10 8 80% 6 scenes

5 door frame 10 8 80% 6 scenes

6 window 10 8 80% 4 scenes

7 window frame 10 4 40% 4 scenes

8 furniture 35 33 94% 8 scenes

9 handle 27 25 93% 2 scenes

are detected flawlessly, as they are the most simple indoor components. Walls and
furniture parts, along with their corresponding handles, are also accurately identi-
fied; whereas doors and windows, with their frames, are more complicated to detect.
Doors can easily blend in as walls, while windows are harder to detect, due to their
transparent nature. During the experiments, it was also observed that success rates
of handle detection are directly proportional with their physical sizes.

2.6 Conclusions

This chapter covers the necessary steps for a 3D environment perception in different
environments with different types of sensors including lidar, stereo and time of flight
variants in a robot perception context. As a first step of the perception, the data
acquisition and preprocessing part is presented including the scan registration too.
For the data aquisition a custom laser scanner is also considered. For the registration
algorithms a robust keypoint feature based variant was proposed which proved to
provide reliable results for sparse and cluttered environments too.
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Further on a system was presented for labeling 3D point clouds taken from hu-
man indoor environments by relying on physical features. The labeling classes are
as follows: floor, ceiling, wall, door frame, door, window frame, window, furniture
and handle. The method was tested on different data sets with promising results.

As research perspectives there are a number of ways to extend this work, both
short-term and long-term. In short-term it is intended to enlarge this classification,
i.e. by adding new classes to the pipeline, e.g.relevant objects in an industrial con-
text. And for long-term the perception can be improved by incorporating vision
into the process, thus contributing to the overall robustness. By using end to end
learning pipelines this perception process can be compacted into a single processing
chain, which can be customized easily according to changes in the environment.
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Chapter 3

3D Object Detection and Recognition

This chapter gives an overview about the 3D object detection and recognition tech-
niques typically used in mobile vehicles assemblies. The first part serves as an
introduction to the currently used algorithms for 3D data based recognition, com-
paring the different algorithms based on their runtime and accuracy. In the second
part of the chapter the presented algorithms are illustrated on a land vehicle navi-
gation application in adverse weather conditions Fulop & Tamas (2018); Tamas &
Jensen (2014).

3.1 Introduction

The use of 3D perception sensors in the mobile robotics application became popular
during the last few years. This is mainly due to the appearance of the affordable
depth sensors such as the time-of-flight or projected infrared (e.g Kinect) ones. The
research focus in the field of object descriptors, keypoints and classification Ali
et al. (2014) grow especially for the Kinect like sensors, while for the time-of-flight
sensors such as the SwissRanger it is rather limited. Although there are similarities
in the characteristics of the two sensors, the quality of depth data acquired with
the SR is smoother compared to the Kinect like senors, and it can used daytime in
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outdoor environment. Instead of RGB data in the case of the SR camera family for
each 3D point the intensity and the confidence information for that point is available.
Thus a different approach and behavior is expected for the 3D point descriptors for
the data emerging from the SR cameras.

In this paper we propose a thorough analyses for the already implemented fea-
ture descriptors in the PCL Rusu & Cousins (2011a) library available with a BSD
type license. This analyze is focused on the data acquired with a Swiss Ranger
4000 (SR4K) time-of-flight camera Belhedi et al. (2012) in a indoor environment
for a large range of objects. As typical error sources the occlusion, subsampling,
boundary errors and signal noise are considered as separate test cases. For perfor-
mance metrics the receiver operating characteristic (ROC) Fawcett (2006) curve is
considered based on the true positives and false positives during the recognition
tests. Further on, the size and runtime of the different descriptors are considered.
Based on these evaluations the best descriptor can be considered for the application
dealing with time-of-flight camera data recognition.

3.2 Data Preprocessinga and Recognition

This section presents in detail the data base building as well as the recognition
pipeline used in testing phase. The details regarding the data filtering, object seg-
mentation and recognition are highlighted as well.

3.2.1 Data set acquisition

In order to build up a test database for the feature descriptor analysis 15 different
sized objects were considered. The list of objects captured with the SR4K camera
are listed in Figure 3.1.

These objects vary in size from 0.1m to 1.5m and are well observable with the
time-of-flight sensor, i.e they are not transparent nor lucid surfaces. Also note that,
objects from the same category were considered, i.e two different chairs or a drawer
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Figure 3.1: Test objects considered during the evaluation (top-left to bottom-right):
box, small box, cable-holder, chair1, chair2, cylinder, drawer, dyno, hexagon, open-
drawer, open-drawer2, paper-holder, small-cylinder, trash-bin, tube.

with different configurations (with one and with two open doors), which makes the
recognition and thus the feature descriptor evaluation challenging. There were more
than 300 different captures made for these objects from different views, distances
and positions.

3.2.2 Filtering

The first step of the object recognition pipeline was the filtering of the raw data. The
main role of this step was to reduce the outliers with a statistical filtering and to get a
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compact representation of the data with a voxel-grid type filter. Also a pass-through
filter was considered in order to cancel out the false readings from the SRK4 sensor,
which are often present like far shadows for the objects. All these filters are part of
the PCL library. In our setup the tuned parameters for the filters were as follows:
for the voxel grid we considered a grid size of 0.01m, which is close to the actual
resolution of the sensor, while for the statistical outliers we considered 50 points
and with the standard deviation threshold of 0.8.

3.2.3 Object segmentation

In the next step of the data preprocessing the major planes are segmented out in
order to get the objects from the scene. This is an important step in order to end
up with the data containing only the objects from a scenario. In order to achieve
this, planar models are fitted to the acquired data, and the largest planes up to a
tuned percentage are removed. The plane fitting is performed in a standard sam-
pling consensus (SAC) approach, and for the plane removal parameter we set to 25
percentage of the original data.

3.2.4 Object recognition

The object recognition domain is a well evaluated one especially in the 2D space,
special contests being organized for this topic such as the Pascal VOC. In the last
few years the recognition in the 3D domain got into the focus with major contribu-
tions such as the work Hane et al. (2013). These ones often make use of techniques
and principles developed in the 2D domain and extrapolated to the 3D case. This
is valid also for the point-correspondence based recognition. This technique usu-
ally makes use of feature descriptors for the points in order to perform an efficient
recognition.

After the feature descriptors are extracted, for the feature comparison different
distance metrics can be used also such as the Euclidean, L1, L2, Hellinger or χ2. In
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our approach we used the χ2 metric of two feature vectors x and y with length N
such as follows:

χx,y =

√
∑

N
i=1 (xi−yi)2

∑
N
i=1(xi +yi)

(3.1)

This metric proved to be stable and good weighting for the different types of
features used in our evaluation tests. For the feature correspondence search the
nearest-neighbors (NN) search was used with the above mentioned metric. The
details regarding the used feature descriptors are presented in the next section.

3.3 Depth Feature Descriptors

The depth feature descriptors as well as the image descriptors are compact repre-
sentation of data. Beside the fact that the data is represented in a compact form, the
features tend to contain rich information extracted from the data. Another important
general characteristics is the invariance with respect to certain transformations and
disturbances. This invariance is essential in order to use them as discriminators in a
recognition type applications.

Two main categories of descriptors are distinguished based on the range of data
on which are computed: local and global ones Aldoma et al. (2012). Global de-
scriptors are meant to be used to describe a larger set of data containing objects
of interest, and they capture the geometric properties of these objects. Local de-
scriptors in contrast are usually computed on a small subset of representative data
(keypoints) for already segmented scenes, and are capturing properties around these
keypoints. Both types of descriptors have their advantages/disadvantages, which we
analyzed in our robustness test benches.
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(a) (b) (c) (d) (e)

Figure 3.2: 3D data corrupted with different noise (best viewed in color): (a) the
nominal data, (b) the contour segmentation noise, (c) occlusion noise, (d) Gaussian
noise, (e) sampling noise

3.3.1 Local variants

3.3.1.1 Rotation invariant feature transform

The rotation invariant feature transform (RIFT) can be applied to 3D data containing
intensity information too. Originally it was proposed in the work of Lazebnik et al.
(2005) as an extension to the SIFT image descriptors Lowe (2004b). The algorithm
iterates over each point Pi in the input point cloud and and within a sphere of radius
r all the points are considered to belong to a subset Pik. An imaginary circle with 4
bins (rings) are considered perpendicular to the normal at the point Pi. All neighbors
of the selected point are assigned to a ring based on the relative distance based on
gradient histogram computed with 8 bins using a thresholding. Thus a total number
of 32 histograms are computed with this technique, which describe circular features
of a point Pi.

3.3.1.2 Intensity Gradient Estimator

The intensity gradient estimator (IGE) uses as input depth data with intensity infor-
mation. In the first step the normals of the 3D points are computed, and for each
point the analytical intensity gradient is computed along the surface direction of the
considered region. This technique is similar to the 2D image intensity computation
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Shams et al. (2007). In the final step the computed gradient is projected onto the
surface, and the output of the estimator is the projection gradient vector containing
the intensity information computed for each input point.

3.3.1.3 Intensity Spin Estimator

This type of descriptor is based on the work of Lazebnik et al. (2005), however the
idea of using intensity information as a descriptor was already present in the earlier
work Johnson & Hebert (1999). In contrast to the IGE type of descriptor in this
case there is no need for explicit normal pre-computation at the input point cloud,
which gives a considerable speed-up for this algorithm. As tuning parameters the
point distance and intensity distance bins can be set, having the same meaning as in
the case of the RIFT descriptor.

3.3.1.4 Spin Image Estimator

The original idea for the spin image (SI) estimation is presented in the work Johnson
& Hebert (1999) and can be applied to depth data with pre-computed normals. The
algorithm computes two types of distances: the distance of the normals computed at
a point and the source normal n and the between the from the considered point along
n. The distances larger than a tuning threshold are rejected. From the remaining
distance pairs a histogram is built, which represents the occurrence of the discrete
distance pairs.

3.3.1.5 Point Feature Histogram

The local point feature histogram (PFH) Morisset et al. (2009) descriptor extends
the original surflet-pair relation histograms suggested in the work of Wahl et al.
(2003). The input for this feature descriptor is a pointcloud with normals. In the first
step for each point Pi the neighbors within a search radius are computed, denoted
with sets Pik. Within these sets point pairs are considered denoted with Ps and Pt

with the meaning source and target. For these pairs, the difference of normals are
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computed and, described with 3 angles around the axis and a distance. As the
distance if varying with viewpoint, this can be left out. Finally, these angles are
considered to be sorted in the 125 binned histogram, which is the output of the
algorithm for each point.

3.3.1.6 Fast Point Feature Histogram

The fast point feature histogram (FPFH) Morisset et al. (2009) is an extension of
the PFH yielding to computationally less expensive variant of the PFH. The major
difference between PFH and FPFH is that while in the case of PFH all pairs of
points are considered in the subsets Pik, in this case only the point pairs between
Pi and the rest of the point within Pik are considered. Thus the computation cost
drops from O(nk2) to O(nk). The three angles in this case are binned into a 11 bin
histogram, the total length of the obtained histogram is 33 for each point.

3.3.1.7 Viewpoint Feature Histogram

The global viewpoint feature histogram (VFH) Rusu et al. (2010b) describes the
pointcloud P as containing two components: a component representing the view-
point of the scene and one containing the FPFH features. In this case the FPFH
features are binned into a 45 bin histogram, and the distance between the points
is also taken into account, thus a total number of 4 extended FPFH features are
stored. The additional view point feature is computed by taking the centroid of
the pointcloud denoted with Pc and computing the FPFH for each neighbors. The
later histogram is represented using 128 bins, thus the total number of bins for a
pointcloud is 308 for this descriptor for the entire pointcloud.
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3.3 Depth Feature Descriptors

3.3.2 Global variants

3.3.2.1 Clustered Viewpoint Feature Histogram

The clustered viewpoint feature histogram (CVFH) Aldoma et al. (2011) is an ex-
tension of the VFH in order to handle occlusion or other types of sensor noise.
This is mainly important for the VFH, as in case of an occluded view of the same
object the histogram of the descriptor varies considerably. The basic idea of the
CVFH is the construction of stable regions (clusters) S which step is done by com-
puting compact regions using the region growing approach with thresholding on the
normal values. Once these S regions are computed, the VFH for each of them is de-
termined, and an additional shape distribution (SD) is computed as SD = (c−pi)

2

sup(c−p2
i )

,
where c is the centroid of the cluster S and the pi represents the points from this
region. This component is also stored in a binned histogram, the total number of
descriptor histogram bins for a single point being equal to 308.

3.3.2.2 Ensemble of Shape Functions

The ensemble of shape functions (ESF) type descriptor was proposed in the work
Wohlkinger & Vincze (2011) which is based on the A3, D2, D3 shape descriptor
functions and extends the D2 type description presented in Ip et al. (2002).

The algorithm starts with selecting a subset of 20000 points from the pointcloud,
and samples three random points from this Pa, Pb, Pc. The D2 distance is based on
the metric distance between the points Pa and Pb. In the next step is verified weather
the line connecting the two points are on the surface (in), or out the surface (out)
or both (mixed). The corresponding bin for the D2 distance is incremented at the
computed bin. This procedure is repeated for the remaining two point-pairs.

3.3.2.3 Radius-based Surface Descriptor

The Radius-based Surface Descriptor (RSD) Marton et al. (2011) has as input an
oriented pointcloud, i.e. with normals and describes the local geometry of a point
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with respect to its neighbors in terms of radii. Each point pair is supposed to lie on
a sphere, and the distance of the points d and the angle between the normals at the
two points has the relation:

d(α) =
√

2r ·
√

1− cos(α)≈ rα + rα
3/24+O(α5) (3.2)

The equation holds for α ∈ (0,π/2), while for an accurate estimation of the
radii a linear regression is applied on the extremas of the (α,r) pairs. Also an
intuitive geometric interpretation of the obtained radii makes it usable for surface
categorization, i.e. the large radii denotes planar surfaces, while small radii is for
cylindric objects. For the recognition test we used the radii as histograms computed
for individual objects.

3.3.2.4 Principal Curvature Descriptor

The principal curvature (PC) descriptor as its name suggest computes the curvature
for an oriented pointcloud, and uses this information as descriptor. Beside the cur-
vatures, it computes the magnitudes and directions for each point along the XYZ
axes, and stores the largest and smallest values for these ones. As tuning parameter
the maximum radii for neighbors search is considered.

3.4 Robustness Test

In our robustness tests we investigated the sensibility of the different feature descrip-
tors with respect to common disturbances encountered during the object recognition
pipelines (see Figure 3.2). For qualitative evaluation we considered the ROC curve,
which incorporates the information from a confusion matrix, while for the quanti-
tative comparison the ACd metric was used defined as Fawcett (2006):

ACd = 1−
√

W · (1−T P)2− (1−W ) ·F p2 (3.3)
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where T P and FP denote the true positives respectively the false positives and W is
a weighting factor giving an application specific weighting to T p in favor of FP.

(a) (b)

(c) (d)

Figure 3.3: 3D data corrupted with occlusion and contour noise (best viewed in
color): (a) occlusion noise at the observation side, (b) occlusion noise at the tem-
plate side, (c) contour noise at the observation side, (d) contour noise at the template

3.4.1 Test methodology

The test methodology followed in this paper is similar to the generic test procedures
in the main literature with the focus on the recognition applications. This means that
we divided our captured dataset into 1/3 and 2/3 ratio used for training and testing
purposes. The training set we denote with templates while the testing objects we
consider as observations of the template objects.

In the training phase we compute for each object each aforementioned descrip-
tor, and store the descriptors in a FLANN Muja & Lowe (2009) data structure and
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store it for later queries. This can be viewed also as an offline phase in a real life
recognition application.

In the test phase each of computed descriptors for the considered object is
searched in the FLANN database containing the specific template feature descrip-
tors. The object is compared against each other object in the database and the one
with the smallest metric defined in eq. (3.1) is considered to be a match. In this
manner are determined the indicators for the recognition such as the Tp expressing
the true positive rate and Fp the incorrect classification rate for the objects.

Another important aspect of the test procedure is that for each type of tested
disturbances, the added artificial disturbance is considered both for the template
and for the observation side in two separate phases, thus the total object-object
comparison exceeds half million test cases.

For the nominal case, i.e. no added artificial noise, the best performance f mean-
ing closest to the point (0,1) is achieved by the PFH and ISE descriptors, while the
poorest is the FPFH in this case.

3.4.2 Occlusion test results

The occlusion test tackles one of the most common issues in the object recognition
pipeline, the object occlusion problem. This practically means that the template is
only partially visible, i.e. an occluded observation is available for the recognition. In
our experimental setup we considered variable occlusion to be tested, by removing
a radial zone of an object at a random position. The amount of removed points
is given as a tuning parameter expressing the removed points as a percentage of
pointcloud size of the template. The results are shown in Figure 3.3 part (a) and
part (b) for the occlusion noise at observation and at the template side.

For the observation side occlusion test case the best behavior is obtained with
the CVFH. ISE and SI type of descriptors, while the poorest results are given by
VFH and FPFH. Also on the template side added disturbance the best robustness
is achieved with the CVFH, which proves the efficient approach of the clustered
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viewpoint approach for the occlusion handling.

3.4.3 Segmentation error test results

Another important source of error in the object recognition applications are emerg-
ing from the segmentation phase. The segmentation errors can be viewed also as
contour noise around the object, which is present due to the inaccuracy in the seg-
mentation process. In order to test this kind of error source, first we determined
the boundary of the test object, and than we removed a tunable region for each
point from the boundary. The results for this test case are shown in Figure 3.3 part
(c) and part (d) for the observation occlusion noise and for the template side noise
respectively. The best results are achieved with VFH and ISE respectively.

3.4.4 Sensor noise test results

The most common problem with the real data recognition setups is the sensor noise,
i.e. measurement inaccuracies due to the physical sensor limitations. Usually the
non-systematic part of the noise is approximated with a Gaussian probability dis-
tribution. In our case we used also this assumption, and we considered a system
with variable added Gaussian noise covariance along the XYZ coordinates added
independently.

This kind of disturbance affects drastically the performance of the CVFH and
VFH at the observation side noise, while the SI is vulnerable for the template side
Gaussian noise disturbances. Still in this case the ISE tolerates well the noise both
on observation and template sides.

3.4.5 Subsampling test results

The last test case deals with the varying sampling type error. This kind of dis-
turbance is present in the case of the time-of-flight cameras, as the same object
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captured at different distances from the sensor has a varying sampling ratio. Thus
this is a disturbance which is important to be analyzed for such type of sensors. In
our test cases we computed different subsampling by applying a tunable sized voxel
grid on the original data.

The majority of the feature descriptors are robust against this type of distur-
bance, however the ISE giving the best performance till now fails at this test phase.
Also the FPFH get worse in this case, getting close to point (1,1) n ROC.

Figure 3.4: Feature descriptor test result for the nominal data (best viewed in color)

3.4.6 Quantitative results

In order to have a quantitative evaluation of the test bench we considered the ACd

metrics defined in eq. (3.3) for the analyzed descriptors. Each descriptor varies
also with the test object considered for the recognition problem, hence in order to
reduce the dimensionality of the evaluation, we considered the average values for
the metrics over all test object for each descriptor. This gives a good performance
indicator for the different test cases without loosing the important characteristics of
the test outputs. The evaluation was done for both the observation and template side
disturbances.

The results for the test cases shown also on the ROC curves are summarized
in the Table 3.1 for the object side noise disturbances and in the Table 3.2 for the
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Descr. Nom. Occ. Cont. Gauss Sampl.
VFH 0.75 0.63 0.64 0.52 0.58
CVFH 0.61 0.61 0.57 0.51 0.59
PFH 0.82 0.56 0.71 0.68 0.71
FPFH 0.41 0.46 0.42 0.46 0.40
RSD 0.73 0.52 0.62 0.62 0.77
RIFT 0.59 0.55 0.53 0.51 0.49
PC 0.48 0.44 0.45 0.39 0.46
SI 0.83 0.54 0.67 0.74 0.83
ISE 0.87 0.59 0.67 0.87 0.63
IGE 0.64 0.57 0.65 0.62 0.60
ESF 0.83 0.57 0.59 0.80 0.74

Table 3.1: Observation side robustness tests containing the nominal, occlusion, con-
tour, Gaussian and sampling noise test cases

template side case. The level of added noise in this test bench was 4cm for the
contour noise removal band, 10% for the occlusion percentage of the original object,
5cm voxel grid for the sampling and the Gaussian noise with 0.03m covariance.

In average the best performance is achieved in this case with the ISE type feature
descriptor and ESF for the object and template side respectively.

In average the best performance in these cases is achieved with the ISE type
feature descriptor and ESF for the object and template side respectively, however
the performances of the descriptor lowered considerably with the noise.

In terms of run-times, the best performance was achieved with FPFH, while
computationally the most intensive ones were the ISE and IGE type of descriptors.
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Descr. Nom. Occ. Cont. Gauss Sampl.
VFH 0.71 0.65 0.64 0.52 0.62
CVFH 0.81 0.69 0.75 0.54 0.74
PFH 0.78 0.71 0.73 0.61 0.690
FPFH 0.88 0.79 0.77 0.74 0.63
RSD 0.73 0.64 0.63 0.63 0.69
RIFT 0.59 0.49 0.47 0.50 0.49
PC 0.59 0.51 0.49 0.55 0.48
SI 0.83 0.66 0.75 0.62 0.84
ISE 0.87 0.66 0.76 0.86 0.64
IGE 0.64 0.65 0.65 0.61 0.63
ESF 0.89 0.59 0.59 0.79 0.77

Table 3.2: Template side robustness tests containing the nominal, occlusion, con-
tour, Gaussian and sampling noise test cases

3.5 CNN Based Object Recognition

3.5.1 Motivation

Our target application was an object recognition system based on 2D CNNs Krizhevsky
et al. (2012) and 3D pose estimation. The combination of 2D state-of-the-art sys-
tems with 3D features carries great possibilities Lahoud & Ghanem (2017). Clearly,
in order to use this technique, not only the RGB images are needed, but also their
corresponding depth images. We implemented a system, that does not rely entirely
on 2D or 3D features, rather combines them and extracts the most important seg-
ments. This system is able to provide good results even when the available compu-
tational resources are limited. Since our main goal was to use it on mobile robots,
the processing power cannot be compared to a computer’s GPU, such as in case of
dedicated servers.
We also tested how do different neural network frameworks perform when the same,
lightweight dataset is used. The comparison highlights the advantages and draw-
backs of each, regarding the domain of object recognition for mobile robot applica-
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tions.

3.5.2 Problem description

This system helps a mobile robot to recognize custom objects in its environment.
Since the capabilities of such a robot are limited, the solution needs to be con-
structed in such a way that it is supported by a modest hardware. An example for
such a hardware is a Raspberry Pi 3 model B with a Intel® Movidius™ Neural
Compute Stick. The stick supports Caffe and TensorFlow, and thanks to its reduced
size the usage is comfortable even for lightweight systems, such as mobile robots.
In order to get started, a basic knowledge is essential about the functionality of
neural networks, convolution, image processing techniques and mobile robot pro-
gramming. However, the learning curve for these non-parametric estimation tech-
niques is rather steep, i.e. in relatively short time custom solution can be achieved
in developing custom object recognition tasks.

3.5.3 Related work

The concept of neural networks and deep learning gains more territory each year
in computer vision and robotics, thus there is a rich literature on frameworks re-
lated to this technology. Placing 2D bounding boxes around detected objects is a
common feature for most detection systems. In this paper we focus on three ma-
jor frameworks, namely Darknet Redmon (2013–2016), Caffe Jia et al. (2014) and
TensorFlow Abadi et al. (2015).
Convolutional Neural Networks are specific feed-forward networks, that perform
extremely well on visual recognition tasks. Since object recognition belongs to this
field, it is convenient to take advantage of this characteristic. The most represen-
tative networks that are worth to mention are Region-based Convolutional Neural
Networks (R-CNN) Girshick et al. (2013), Fast R-CNN Girshick (2015), You Only
Look Once (YOLO) Redmon et al. (2015), Faster R-CNN Ren et al. (2015) and
Region-based Fully Convolutional Networks (R-FCN) Dai et al. (2016). All of the
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above require a powerful GPU, at least for the training phase. In order to have a
decent, preferably real-time performance, it is recommended to use GPU during the
deployment process as well.
Using the Pascal VOC 2007 dataset, the performances are compared in Table 3.3.

Method mAP Rate
YOLO 63.4% 45 fps
YOLOv2 76.8% 67 fps
R-CNN 58.5% 3 fps
Fast R-CNN 70.0% -
Faster R-CNN (VGG-16) 73.2% 5 fps
R-FCN (ResNet50) 77.4% 8-11 fps
R-FCN (ResNet101) 79.5% 5-8 fps

Table 3.3: Performance comparison of neural networks for object recognition based
on mean average precision (mAP) and frames per second (fps).
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Darknet Redmon (2013–2016) is an open source neural network framework,
and it uses YOLO, a state-of-the-art object detection system. Its performance de-
pends heavily on the machine’s GPU, but under optimal circumstances it performs
real-time, meaning 40-90 fps. It makes use of a single neural network to the whole
image, then divides into multiple regions and predicts the locations, using bounding
boxes and probabilities. The predictions are influenced by the environment of the
detected object. Since it uses only one network evaluation, its speed exceeds mul-
tiple times the speed of R-CNNs or even Fast R-CNNs. Recently they introduced
YOLOv2Redmon & Farhadi (2016), which provides some additional improvements
over the former variant.
Caffe Jia et al. (2014) is a deep learning framework developed by Berkeley AI Re-
search. It mainly focuses on image processing, and it is not designed for other deep
learning application such as text or sound recognition. The previously mentioned
networks, namely R-CNN, Fast R-CNN and Faster R-CNN can all be integrated
and effectively used with Caffe.
TensorFlow Abadi et al. (2015) is probably the most widely used open source deep
learning framework. It was developed by researchers and engineers working on the
Google Brain Team within Google’s Machine Intelligence research organization. It
is a flexible and adaptable system, that can be useful on many fields of interest.

3.6 Object recognition results

3.6.1 2D

The first objective is the preparation of a sufficiently rich dataset, meaning that it
contains satisfactory amount of data, in this case images. The resolution of the pic-
tures should be adequate, neither too high, nor too low, and it is essential that the
overall quality is acceptable.
Usually a preliminary processing and filtering is recommended in order to empha-
size the contour of the objects and to reduce the images’ size. Labels need to be
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assigned to each class, so the identity of the detectable objects from the images can
be ”learned”. The dataset is divided in two parts: a bigger one for training and
a smaller for validation. The structure of the neural network is then determined.
Since CNNs achieved the best performance in this domain, their usage is highly
recommended. The desired amount of convolutional, pooling and fully-connected
layers, respectively the activation functions need to be specified.
The network treats the images as matrices filled with pixel values. During the train-
ing process filters are applied on the images, that are updated after each iteration.
As the error decreases, the filters become more and more accurate. Once the train-
ing process is finished, the filters can be used on new images or even on a camera
stream.

3.6.2 3D

3D state-of-the-art detection methods have an increased runtime and need way more
processing power than their 2D counterparts. Using point clouds acquired from
RGB-D sensors, semantic segmentation and training is a costly process, wearing
down even powerful GPUs.

A major challenge in the 3D object detection part relies in the part segmentation:
the separation of the background and region of interest Militaru et al. (2016b). For
this a useful technique is the use of the 2D bounding boxes as hints in the 3D point
cloud segmentation part, thus speeding up and making more robust the recognition
pipeline.

This approach assumes that the color and depth cameras are relatively cali-
brated. In our case we used a Kinect like camera, for which this constraint is
satisfied. According to our previous investigations on the feature 3D based ob-
ject recognition robustness Tamas & Jensen (2014) we chose the viewpoint feature
histogram (VFH) based variant for its speed and robustness against sampling noise.
The disadvantage of this approach, i.e. the sensitivity to the boundary segmentation
was compensated with the use of pre-segmentation based on the 2D bounding boxes
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determined by the 2D detection algorithm.

3.6.3 Fused 2D-3D approach

Test conditions: The tests were conducted on a Dell laptop, with Nvidia GeForce
GTX 1060 6GB graphics card and Intel® Core™ i7-7700HQ CPU @ 2.80GHz x 8
processor, using Ubuntu 16.04 LTS, 64-bit OS, CUDA 9.0, cuDNN 7.0.5, Tensor-
FLow 1.6.0, Caffe 1.0.
Our experiments began by the comparison of three frameworks, and several net-
works. In order to achieve the best accuracy, the same custom dataset was used for
each of them. This dataset was created by us, using a Kinect camera and it contains
4 object classes, including pictures about objects from several angles.
In the case of Darknet, the modified YOLOv2 network was used. For this, the data
preparation takes more time, since the images must be labeled. This label contains
the class number, and the position of the object relative to the image. This ensures
not only the recognition, but also the right placement of the bounding boxes during
detection. These bounding boxes are weighted by the predicted probabilities. The
configuration files include the structure of the network and the parameters that need
to be set. The training executed until the average loss was stagnating around 0.08.
After 30.000 iterations, the model reached its present form. Figure 3.5 presents
the visual results from the recognition process. CPU is adequate only if pictures
are used in order to test the model, but for real-time performance CUDA is recom-
mended.

For Caffe, the labels for each class were assigned in the program. The network
used is a modified Alexnet Krizhevsky et al. (2012). The process started with his-
togram equalization, resizing, division in two parts then storage in LMDB database.
With the help of already implemented Caffe tools, the mean image of the training
data can be generated. The structure of the network is defined in a prototxt file,
specific to Caffe. The solver, responsible for model optimization, contains the base
learning rate, the learning rate policy, step size, maximum number of iterations and
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Figure 3.5: Examples of detection of the objects of interest, after applying the
trained model, using Darknet Redmon (2013–2016) and the modified YOLOv2
Redmon & Farhadi (2016) network.

more advanced parameters, that can be chosen individually. The switch between
CPU and GPU works seamlessly, but the process used with CPU is almost ineffec-
tive. During training with GPU, the loss quickly stabilized around 0.38. Figure 3.6
shows the evolution of the accuracy and loss after the first 10000 iterations.

TensorFlow was the only framework that showed a decent performance even when
only CPU was used. In order to have more common points for comparison, the net-
work is a modified Alexnet in this case too. With respect to the length of the code,
this solution included the largest amount of it. The labels were assigned in the
program and the configuration of the parameters does not require a separate script.
Since the entire purpose of TensorFlow is the usage of computational graphs, it can
be executed much more efficiently than simply in Python. Once the training process
reached the maximum given number of iterations it stopped, and the average loss
stabilized around 0.39. The test shows the results in Figure 3.7 after 10000 itera-
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Figure 3.6: The evolution of the training parameters during the first 10000 itera-
tions. Red - training loss, green - test loss, blue - test accuracy (best viewed in
color).

tions.

The results for each method were exported, compared and the final comparison can
be found in Table 3.4. It presents the performance recorded on the test set. Each
model was used on the same dataset, and the precision is recorded for each class
separately, then the average is calculated. The results are based on a small test set,
that contains a total of 40 images, 10 for each object class. Each percentage shows
the number of correct detections over the total number of images for each object
class separately.

It is important to mention, that the final conclusion cannot be drawn by taking
into consideration only these results. The created code can be modified, and the
network structure can be changed in order to achieve a better performance. This
comparison puts accent on computer vision and CNNs respectively. Darknet and
YOLO were created only for this purpose, thus professionally optimized, including
out-of-the-box features. Caffe has some useful built-in tools as well, but since our
dataset is a custom one and consists of a limited number of pictures, its accuracy is
poorer. The situation is similar to TensorFlow, where a bigger dataset would result
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Figure 3.7: The correct and predicted labels of nine, randomly chosen objects from
the list. True - real label, Pred - predicted label.

62



3.6 Object recognition results

Class Darknet Caffe TensorFlow
Box 60% 80% 80%
Fire extinguisher 100% 40% 40%
Pallet 60% 80% 70%
First-aid kit 90% 70% 60%
Total 77.5% 67.5% 62.5%

Table 3.4: The results of the final comparison, for each class separately and the
average of detection rate.

in better precision. Also, for the latter everything needs to be written manually.
Without a high-level API, the code becomes unnecessarily long and repetitive. On
the other hand it is the most flexible and versatile variant. This fact was proved to be
convincing enough to continue the research in order to find a more efficient network
structure. Using Keras Chollet et al. (2015) with TensorFlow backend, the problem
of the long-drawn code is eliminated. We created additional datasets consisting of
a higher number of images in order to have a better insight of its influence on the
performance. During the process, multiple factors were taken into consideration,
and their influence on the results was recorded. The tested activation functions are
the three most used ones, namely ”relu”, ”sigmoid” and ”tanh”. The number of
layers varies between 2 and 4, and the number of neurons on some layers goes up
to 256. The convolutional kernels are the size of 3x3. The most successful combi-
nations are listed in Table 3.5. Since one layer is not sufficient, this possibility is
not included in the table. For the sake of simplicity and time management, we used
only two object classes in order to find the best architecture. The training phase
lasted for 30 epochs and the fully connected layer consists of 500 neurons in each
case. Multiple combinations were eliminated, because the model did not converge
properly.
The most efficient networks were then tested on the original dataset of four object
classes, and on another dataset consisting of 20 different objects. The results of
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Layer 1 Layer 2 Layer 3 Layer 4 Results
Size Act f. Size Act f. Size Act f. Size Act f. Cl 1 Cl 2 Avg

2 relu 2 relu - - - - 92% 94% 93%
2 sigmoid 2 sigmoid - - - - 85% 57% 71%
2 tanh 2 tanh - - - - 91% 88% 89.5%
2 relu 4 relu - - - - 95% 94% 94.5%
2 tanh 4 tanh - - - - 100% 75% 87.5%
4 relu 4 relu - - - - 99% 77% 88%
4 relu 8 relu - - - - 99% 82% 90.5%
4 tanh 8 tanh - - - - 99% 69% 84%
8 relu 8 relu - - - - 99% 91% 95%
8 tanh 8 tanh - - - - 99% 83% 91%
8 relu 16 relu - - - - 97% 95% 96%

16 relu 16 relu - - - - 98% 94% 96%
16 tanh 16 tanh - - - - 96% 88% 92%
16 relu 32 relu - - - - 99% 89% 94%
8 relu 8 relu 8 relu - - 98% 83% 90.5%
8 tanh 8 tanh 8 tanh - - 95% 96% 95.5%
8 relu 8 relu 16 relu - - 96% 95% 95.5%
8 tanh 8 tanh 16 tanh - - 99% 86% 92.5%
8 relu 16 relu 32 relu - - 93% 98% 95.5%
8 tanh 16 tanh 32 tanh - - 99% 85% 92%

16 relu 16 relu 16 relu - - 98% 95% 96.5%
16 tanh 16 tanh 16 tanh - - 100% 78% 89%
32 relu 32 relu 32 relu - - 98% 88% 93%
32 tanh 32 tanh 32 tanh - - 99% 70% 84.5%
32 relu 32 relu 64 relu - - 96% 98% 97%
32 relu 32 relu 64 relu - - 100% 79% 89.5%
32 tanh 64 tanh 32 tanh - - 97% 90% 93.5%
2 relu 4 relu 8 relu 16 relu 96% 93% 94.5%
2 tanh 4 tanh 8 tanh 16 tanh 100% 88% 94%

32 relu 64 relu 128 relu 256 relu 96% 94% 95%
32 tanh 64 tanh 128 tanh 256 tanh 97% 95% 96%

Table 3.5: The most successful network architectures and their accuracy for two
object classes.
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Layer 1 Layer 2 Layer 3 Layer 4 4 classes 20 classes
Nr Act f. Nr Act f. Size Act f. Size Act f. 30 ep 100 ep 30 ep 100 ep
32 relu 32 relu 64 relu - - 77.5% 75% 46.5% 48.1%
16 relu 16 relu 16 relu - - 72.5% 75% 46.25% 47.1%
8 relu 16 relu - - - - 62.5% 85% 44.8% 45.1%
6 relu 16 relu - - - - 80% 72.5% 46.45% 44.7%

32 tanh 64 tanh 128 tanh 256 tanh 35% 64% 52.55% 53.75%

Table 3.6: The results of the multi-class implementation for the most efficient
networks taken from Table 3.5, tested on the original dataset (4 classes) and on a
more extended one (20 classes).

both tests are shown in Table 3.6. In the case of the original dataset, the results
show a powerful increase in comparison to the previously presented Alexnet struc-
ture. However, when more objects are added, a significant decrease in precision
can be observed. This can happen due to multiple facts regarding the relevance of
the training and test datasets, the significantly higher number of object classes or
other disturbing effects. As a potential deployment use-case, the model was also
tested on the Intel® Movidius™ Neural Compute Stick. It is a small scale device,
that supports Caffe and TensorFlow and allows the tuning and deploying of CNNs
on low-power appliances. The stick comes with a SDK, which offers an API, tools
and examples as well. It creates an internal compiled format based on the desired
input, which can be used later on the deployment device. The API provides soft-
ware for connection establishment with the stick, loading the previously created
graph and running detection on it. Its performance was proved to be satisfactory for
such a small scale device. It is able even for real-time detection with a low power
consumption/size constrained applications such as in case of autonomous rovers.
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3.7 Conclusions

In this chapter the problem of 3D feature descriptor robustness was analysed for
radiometric data. The main aim was to give both a qualitative and quantitative eval-
uation of the existing feature descriptors for the 3D domain on this type of specific
data, and to test against a large variety of disturbances including the occlusion, seg-
mentation error, sensor noise and sub-sampling cases too. The result were presented
using the ROC curves and the ACd metric for the different test benches. Beside this,
the fused 2D-3D detector pipeline based on deep networks was presented and anal-
ysed for its reliability. In the second part of this chapter we summarized our lessons
learned different approaches from three main frameworks in the current state of the
art in 3D object recognition. The main focus was on the implementation of 2D
and 3D object recognition techniques using a Kinect like depth camera for mobile
robots in indoor environment. A demo code and video showing the results of this
investigation is available on the website of the authors.
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Chapter 4

2D-3D Heterogeneous Data Based
Pose Estimation

This chapter introduces the patch based external camera pose estimation method. In
the first part is presented the central perspective camera case with some application
examples. Next, the case of the catadioptric camera is considered where the spectral
and radiometric information fusion is highlighted with real life examples. This
chapter is based on the papers Tamas & Kato (2013a); Tamas et al. (2014).

4.1 Taxonomy and Challenges of Camera External
Pose Estimation

One of the most challenging issue in robotic perception applications is the fusion
of information from several different sources. Today the majority of the platforms
include range (2D or 3D sonar/lidar) and camera (color/infrared) sensors that are
usually work independently, although the information from different sources can be
used in a complementary way.

In order to fuse the data coming from these independent devices, the measured
data has to be transformed into a common coordinate frame. This is achieved by
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4.1 Taxonomy and Challenges of Camera External Pose Estimation

either extrinsic or intrinsic-extrinsic calibration, depending on whether the internal
camera parameters are available or not. In case of the extrinsic parameter estimation
for a range-camera sensor pair the 3D rigid translation between the two coordinate
systems is determined.

There is a considerable research effort invested in autonomous car driving projects
both on academic and industrial side. While for the specific scenarios such as high-
ways there are already a number of successful applications, this topic is still gen-
erally not solved for complex environments such as the urban ones Geiger et al.
(2014); Lin et al. (2013). The recent developments in the autonomous driving in
urban environment using a great variety of close-to-market sensors including differ-
ent cameras put into the focus the need for information fusion emerging from these
sensors Furgale et al. (2013).

While internal calibration can be solved in a controlled environment, using spe-
cial calibration patterns, pose estimation must rely on the actual images taken in
a real environment. There are popular methods dealing with point correspondence
estimation such as Scaramuzza et al. (2006b) or other fiducial marker images sug-
gested in Kannala & Brandt (2006), which may be cumbersome to use in real life
situations. This is especially true in a multimodal setting, when omnidirectional
images need to be combined with other non-conventional sensors like lidar scans
providing only range data. The Lidar-omnidirectional camera calibration problem
was analyzed from different perspectives: in Scaramuzza et al. (2007), the cali-
bration is performed in natural scenes, however the point correspondences between
the 2D-3D images are selected in a semi-supervised manner. Mirzaei et al. (2012)
tackles calibration as an observability problem using a (planar) fiducial marker as
calibration pattern. In Pandey et al. (2012), a fully automatic method is proposed
based on mutual information (MI) between the intensity information from the depth
sensor and the omnidirectional camera. Also based on MI, Taylor & Nieto (2012)
performs the calibration using particle filtering. However, these methods require a
range data with recorded intensity values, which is not always possible.

Instead of establishing point matches or relying on artificial markers or recorded
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4.2 Perspective Camera Case

intensity values, we propose a pose estimation algorithm which works on segmented
planar patches. Since segmentation is required anyway in many real-life image
analysis tasks, such regions may be available or straightforward to detect. The main
advantage of the proposed method is the use of regions instead of point correspon-
dence and a generic problem formulation which allows to treat several types of
cameras in the same framework. We reformulate pose estimation as a shape align-
ment problem, which can be efficiently solved in a similar way as in Domokos et al.
(2012). The method has been quantitatively evaluated on a large synthetic dataset
and it proved to be robust and efficient in real-life situations.

This chapter introduces a novel region based calibration framework for non-
conventional 2D cameras and 3D lidar sensors emerging from different sources in a
single step automatic manner. The main novelty is the formulation of the calibration
problem as a general 2D-3D non-linear registration problem which works without
special targets or established point matches. The registration is accomplished by
solving system of nonlinear equations based on the idea of Domokos et al. (2012).
However, the equations are constructed in a different way here due to the different
dimensionality of the lidar and camera coordinate frames as well as the different
camera models. The concept was proven to be viable on a large scale synthetic
dataset as well as on real data using perspective and dioptric cameras too.

4.2 Perspective Camera Case

4.2.1 Related work

The need for registration between heterogeneous sensor data is common to mul-
tiple research fields including aerial remote sensing Mastin et al. (2009); Mishra
& Zhang (2012), medical images processing Pluim et al. (2003) or mobile robotic
applications Geiger et al. (2012); Pandey et al. (2012); Scaramuzza et al. (2007);
Taylor & Nieto (2012). Different approaches are tackling the non-trivial 2D-3D reg-
istration problem: point or line correspondence finding between the two domains
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Mastin et al. (2009); Stamos & Allen (2001), intensity image based correlation
Pandey et al. (2012), use of specific artificial land-mark Alismail et al. (2012);
Gong et al. (2013); Herrera C et al. (2012); Krause & Evert (2012); Naroditsky
et al. (2011); Unnikrishnan & Hebert (2005); Zhang et al. (2008) or mutual infor-
mation extraction and parameter optimizationTaylor & Nieto (2012); Viola & Wells
(1997); Williams et al. (2004).

The extrinsic calibration of 3D lidar and low resolution color camera was first
addressed in Unnikrishnan & Hebert (2005) which generalized the algorithm pro-
posed in Zhang (2004). This method is based on manual point feature selection
from both domains and it assumes a valid camera intrinsic model for calibration. A
similar manual point feature correspondence based approach is proposed in Scara-
muzza et al. (2007).

There are also extensions to the simultaneous intrinsic-extrinsic calibration pre-
sented in the work Mirzaei et al. (2012) which used the intensity information from
lidar to find correspondences between the 2D-3D domains. Other works are based
on the fusion of IMU or GPS information in the process of 2D-3D calibration Nunez
et al. (2009), mainly in initialization phase of the calibration Taylor & Nieto (2012).

Recently there has been an increasing interest in various calibration problem
setups ranging from high-resolution spatial data registration Mastin et al. (2009) to
low-resolution, high frame rate depth commercial cameras such as Kinect Herrera C
et al. (2012); Zhang & Zhang (2011), or in the online calibration during different
measurements in time such as in case of a traveling mobile robot Levinson & Thrun
(2013); Pandey et al. (2012).

4.3 Region-based calibration framework

Consider a lidar camera with a 3D coordinate system having its origin O in the cen-
ter of laser sensor rotation, x and y axes pointing to the right and down, respectively,
while z is pointing away from the sensor. Setting the world coordinate system to
the lidar’s coordinate system, we can always express a 3D lidar point X with its
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4.3 Region-based calibration framework

homogeneous world coordinates X = (X1,X2,X3,1)T . The perspective camera sees
the same world point X as a homogeneous point x = (x1,x2,1)T in the image plain
obtained by a perspective projection P:

x = PX (4.1)

where P is the 3× 4 camera matrix, which can be factored into the well known
P = KR[I|t] form, where I is the identity matrix, K is the 3× 3 upper triangular
calibration matrix containing the camera intrinsic parameters:

K =

 fx ox

fy oy

1

 , (4.2)

A classical solution of the calibration problem is to establish a set of 2D-3D
point matches using a special calibration target Alismail et al. (2012); Herrera C
et al. (2012); Mirzaei et al. (2012); Naroditsky et al. (2011); Unnikrishnan & Hebert
(2005), and then solve for P via a system of equation based on (4.1) or the mini-
mization of some error function. When a calibration target is not available, then
solutions typically assume that the lidar points contain also the laser reflectivity
value (interpreted as a gray-value), which can be used for intensity-based matching
or registration Mastin et al. (2009); Naroditsky et al. (2011); Pandey et al. (2012);
Scaramuzza et al. (2007).

However, in many practical applications (e.g infield mobile robot), it is not pos-
sible to use a calibration target and most lidar sensors will only record depth in-
formation. Furthermore, lidar and camera images might be taken at different times
and they need to be fused later based solely on the image content. Therefore the
question naturally arises: what can be done when neither a special target nor point
correspondences are available? Herein, we propose a solution for such challenging
situations. In particular, we will show that by identifying a single planar region both
in the lidar and camera image, the extrinsic calibration can be solved. When two
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4.3 Region-based calibration framework

such non-coplanar regions are available then the full calibration can be solved. Of
course, these are just the necessary minimal configurations. The more such regions
are available, a more stable calibration is obtained.

Our solution is based on the 2D shape registration approach of Domokos Domokos
et al. (2012), where the alignment of non-linear shape deformations are recovered
via the solution of a special system of equations. Here, however, the calibration
problem yields a 2D-3D registration problem, which requires a different technique
to construct the system of equations: Since correspondences are not available, 4.1
cannot be used directly. However, individual point matches can be integrated out
yielding the following integral equation:∫

D
xdx =

∫
PF

zdz, (4.3)

where D corresponds to the region visible in the camera image and PF is the image
of the lidar region projected by the camera matrix P. The above equation corre-
sponds to a system of 2 equations only, which is clearly not sufficient to solve for
all parameters of the camera matrix P. Therefor we adopt the general mechanism
proposed in Domokos et al. (2012) to construct new equations. Indeed, (4.1) re-
mains valid when a function ω : R2 → R is acting on both sides of the equation

ω(x) = ω(PX), (4.4)

and the integral equation of (4.3) becomes∫
D

ω(x)dx =
∫

PF
ω(z)dz. (4.5)

Adopting a set of nonlinear functions {ωi}`i=1, each ωi generates a new equation
yielding a system of ` independent equations. Hence we are able to generate suf-
ficiently many equations. The parameters of the camera matrix P are then simply
obtained as the solution of the nonlinear system of equations (4.5). In practice,
an overdetermined system is constructed, which is then solved by minimizing the
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algebraic error in the least squares sense via a standard Levenberg-Marquardt algo-
rithm.

Note that computing the integral on the right hand side of (4.5) involves the
actual execution of the camera projection P on F, which might be computationally
unfavorable. However, choosing power functions for ωi:

ωi(x) = xni
1 xmi

2 , ni ≤ 3 and mi ≤ 3 (4.6)

and using a triangular mesh representation F4 of the lidar region F, we can adopt
an efficient computational scheme. First, let us note that this particular choice of ωi

yields the 2D geometric moments of the projected lidar region PF. Furthermore,
due to the triangular mesh representation of F, we can rewrite the integral adopting
ωi from (4.16) as∫

D
xni

1 xmi
2 dx =

∫
PF

zni
1 zmi

2 dz ≈ ∑
∀4∈F4

∫
4

zni
1 zmi

2 dz. (4.7)

The latter approximation is due to the approximation of F by the discrete mesh
F4. The integrals over the triangles are various geometric moments which can be
computed using e.g. the following formula for xpyq Best (1964):

2
p

∑
k=0

q

∑
l=0

(−1)k+l(p
k

)(q
l

)
νkl

k+ l +2
xp−k

0 yq−l
0 (4.8)

where

νkl =
k

∑
i=0

l

∑
j=0

(k
i

)(l
j

)
k− i+ l− j+1

(x0− x1)
i (x1− x2)

k−i (y0− y1)
j (y1− y2)

l− j (4.9)

with the notation xi and yi, i = 0 . . .2 for the vertices of the triangles.
The summary of the numerical implementation of the proposed method is pre-

sented in Algorithm 4.1. Note that normalization is critical to ensure a numerically
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stable solution (see Domokos et al. (2012) for details). For extrinsic calibration,
K is known a priori, while for intrinsic-extrinsic calibration, it is initialized with
fx = fy = 800 (corresponding to a normal 65 degree field of view) and o is set to
the center of the image.

Algorithm 4.1 The proposed calibration algorithm
Input: 3D point cloud and 2D binary image representing the same region, and the

calibration matrix K
Output: Parameters of the camera matrix P

1: Normalize 3D points into the unit cube and 2D point into the unit square cen-
tered in the origin.

2: Triangulate the region represented by the 3D point cloud.
3: Construct the system of equations of (4.7) with the polynomial ωi functions of

(4.16).
4: Initialize the camera matrix as P = K[I|0].
5: Solve the nonlinear system of equation in (4.7) using the Levenberg-Marquardt

algorithm
6: Unnormalize the solution.

Figure 4.1: Extrinsic calibration results (from left-to-right) the translation errors
along X , Y and Z axis.
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4.4 Evaluation on synthetic data

4.4 Evaluation on synthetic data

For the quantitative evaluation of the proposed method, we generated a benchmark
set containing 29 different shapes and their transformed versions, a total number of
2D-3D data pairs exceeding 2500 samples divided into different test setups. The
3D-2D image pairs were generated in the following way: The 3D image were gen-
erated by placing 2D planes in the 3D Euclidean space and the shapes were placed
on these planes, whose size was normalized into a 1m3 cube, with a random initial
rotation in the range of − π

16 , . . . ,
π

16 and a depth of 10m. For images with 2 and 3
planes, a similar procedure was applied and the placement of planes relative to each
other was initially perpendicular followed by a random translation of 5−15m and
rotation of − π

16 , . . . ,
π

16 . The initial placement of the 3D planes was considered by
taking into account common urban structural properties, in which environment the
real data experiments were performed.

The synthetic 2D images of the 3D data were generated with a camera being
rotated in range of−π

4 , . . . ,
π

4 and the random displacement of 2−10m. The camera
calibration matrix K used for projection had a random focal length fx, fy in the
range of 400−1600 with a 5% difference between fx and fy, and the principal point
o was set to the center of the 1024× 768 image plane with an added 5% random
variation. Thus random 2D projections were obtained with the so defined random
camera matrix P = KR[I|t].

Figure 4.2: Extrinsic calibration results, including (from left-to-right) the rotation
errors around X , Y and Z axis.
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In practice, the planar regions used for calibration are segmented out from the
lidar and camera images. In either case, we cannot produce perfect shapes, therefore
robustness against segmentation errors was also evaluated on simulated data: we
randomly added or removed squares uniformly around the boundary of the shapes,
both in 3D and 2D, yielding an error around the contour of 5% and 10% of the
original shape. Using these corrupted images, we tested the robustness with respect
to 3D errors using the 3D contour noise corrupted images and corresponding noise-
less 2D projections as well as robustness with respect to 2D image errors using 2D
contour noise corrupted images and their noise-less 3D images.

The algorithm was implemented in Matlab and all test cases were run on a stan-
dard quad-core PC. Calibration errors were characterized in terms of the percentage
of non-overlapping area of the reference and registered images (denoted by δ ), the
Frobenius norm of the difference between the found and the true camera matrices,
as well as differences in the external parameters.

4.4.1 Extrinsic parameter estimation

In this test case the results for extrinsic parameter estimation using a virtual camera
with known K is presented. The plots contain information about the test cases with
1, 2, and 3 planes used for calibration, as well as the robustness test results with
corrupted 3D and 2D regions.

In Fig. 4.1 the result for translation error between the camera and lidar coordi-
nate frames is presented. The translation error is not the same on the different axes:
the largest is on the Y axis, as in this direction the resolution of the camera was
lower than along the X axis. The best results were achieved with the 3 plane set
as this is the most constrained setup for the camera-lidar position. For the majority
of the cases the error was less than 3cm for a range of 10m. Segmentation errors
increase these errors, but it is robust enough up to 10% error level.

In Fig. 4.2 the result for rotation error between the camera and lidar coordinate
frames is presented. The results are not the same for the different axes. The most
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Figure 4.3: Synthetic data calibration results for extrinsic parameter estimation,
including the δ error, the Frobenius norm and the runtime

Figure 4.4: Intrinsic-extrinsic calibration results (from left-to-right) the δ error, the
Frobenius norm and the runtime.

robustness is manifested along the Z axis rotation: this is not surprising as this
axis is perpendicular to the observation plane, hence rotation causes only a minimal
distortion on the image. Other axes are more affected by error, but for more than
70% of the cases the error was lower than 0.5 degrees on each axis, which is quite
good for a 45 degrees rotation range.

The registration error δ and the runtime together with the Frobenius norm of the
projection matrix is shown in Fig. 4.3. The contour noise on the 3D template, which
can be interpreted as depth noise, causes a larger error than segmentation errors in
the 2D camera image. This is visible in the δ error plot as well as in the Frobenius
norm. The runtime for the majority of the cases is less than 2min.
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4.5 Real data experiments

Figure 4.5: Calibration example with real data of an outdoor environment (left-
right): 3D data with the selected region (yellow); color 2D data with the corre-
sponding region (green); color information overlaid on 3D data using the extrinsic
parameter estimates

4.5 Real data experiments

Next, we present some calibration results on real data. The planar regions are simple
rectangular regions segmented in the 2D and 3D domains. The lidar and camera
images are taken from different viewpoints.

Color images were taken by a standard camera of 1024× 768 resolution with
prior calibration and radial distortion removal. The IR image is taken by an indus-
trial Flir camera of 240× 240 resolution with unknown intrinsic parameters. The
images were captured at night time in order to reduce the effect of solar heat on the
building facades.

It is important to highlight that the conventional internal calibration for such a
camera is not trivial, calibration of IR and depth data is rather cumbersome, often
special setups are needed both for intrinsic and extrinsic calibration Borrmann et al.
(2012). Thus we applied the intrinsic-extrinsic calibration for the IR experiment.

4.5.1 Comparison using public datasets

For the performance evaluation of the proposed method a calibration on the public
KITTI dataset (http://www.cvlibs.net/datasets/kitti/) was con-
sidered, which contained also the ground truth for the camera-lidar devices. In Fig.
4.5, the extrinsic calibration of a color camera with known K matrix and sparse 3D
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4.6 Catadioptric Camera Case

Tf. tx ty tz roll pitch yaw
Prop. 0.011 0.029 0.38 1.4 1.9 1.5

Norm. Taylor & Nieto (2012) 0.014 0.036 0.41 1.5 2.3 1.6
Int. Taylor & Nieto (2012) 0.007 0.026 0.18 0.8 1.2 0.9

Table 4.1: Comparative results with the proposed method (Prop), normal based
MI(Norm)Taylor & Nieto (2012) and intensity based MI (Int)Taylor & Nieto
(2012).

lidar data from the drive nr = 5 is shown.
In order to evaluate the accuracy of the registration, the transformation param-

eters were compared against the ground truth values. Also the calibration test was
performed using the mutual information extraction described in Taylor & Nieto
(2012) for 3D data with intensity and normal information. The calibration results
are summarized in the Table 4.1. The results of the proposed method (Prop.) proved
to be sensitive to the segmentation accuracy, nevertheless the registration both vi-
sually and numerically was accurate in the range of few millimeters translation and
around 1 degree rotation. The mutual information based method with lidar inten-
sity (Int.) data gave smaller absolute errors but this method using only depth data
(Norm.) became quite sensitive to local minimals and the final calibration error was
larger. Also the runtime GPU implementation of the mutual information method is
with an order of magnitude slower than the CPU implementation of the proposed
algorithm.

4.6 Catadioptric Camera Case

4.6.1 Omnidirectional camera model

A unified model for central omnidirectional cameras was proposed by Geyer and
Daniilidis Geyer & Daniilidis (2000), which represents central panoramic cam-
eras as a projection onto the surface of a unit sphere. This formalism has been
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adopted and models for the internal projection function have been proposed by
Micusik Mičušı́k (2004); Mičušı́k & Pajdla (2004) and subsequently by Scara-
muzza Scaramuzza et al. (2006a) who derived a general polynomial form of the
internal projection valid for any type of omnidirectional camera. In this work, we
will use the latter representation. Let us first see the relationship between a point
x in the omnidirectional image I and its representation on the unit sphere S (see
Fig. 4.6). Note that only the half sphere on the image plane side is actually used,
as the other half is not visible from image points. Following Scaramuzza et al.
(2006a,b), we assume that the camera coordinate system is in S, the origin (which
is also the center of the sphere) is the projection center of the camera and the z axis
is the optical axis of the camera which intersects the image plane in the principal
point. To represent the nonlinear (but symmetric) distortion of central omnidirec-
tional optics, Scaramuzza et al. (2006a,b) places a surface g between the image
plane and the unit sphere S, which is rotationally symmetric around z. The de-
tails of the derivation of g can be found in Scaramuzza et al. (2006a,b). Herein,
as suggested by Scaramuzza et al. (2006b), we will use a fourth order polynomial
g( |x‖) = a0 +a2‖x‖2 +a3‖x‖3 +a4‖x‖4 which has 4 parameters representing the
internal parameters (a0,a2,a3,a4) of the camera (only 4 parameters as a1 is always
0 Scaramuzza et al. (2006b)). The bijective mapping Φ : I→ S is composed of 1)
lifting the image point x ∈ I onto the g surface by an orthographic projection

xg =

[
x

a0 +a2‖x‖2 +a3‖x‖3 +a4‖x‖4

]
(4.10)

and then 2) centrally projecting the lifted point xg onto the surface of the unit sphere
S:

xS = Φ(x) =
xg

‖xg‖
(4.11)

Thus the omnidirectional camera projection is fully described by means of unit
vectors xS in the half space of R3.

Let us see now how a 3D world point X ∈ R3 is projected onto S. This is
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Figure 4.6: Omnidirectional camera model

basically a traditional central projection onto S taking into account the extrinsic pose
parameters, rotation R and translation t, acting between the camera (represented by
S) and world coordinate system. Thus for a world point X and its image x in the
omnidirectional camera, the following holds on the surface of S:

Φ(x) = xS = Ψ(X) =
RX+ t
‖RX+ t‖

(4.12)

4.7 Pose Estimation

Consider a Lidar camera with a 3D coordinate system having its origin in the center
of laser sensor rotation, x and y axes pointing to the right and down, respectively,
while z is pointing away from the sensor. Setting the world coordinate system to the
Lidar’s coordinate system, we can relate a 3D Lidar point X with its image x in the
omnidirectional camera using (4.12). In practical applications, like robot navigation
or data fusion, the omnidirectional camera is usually calibrated (i.e. its intrinsic pa-
rameters (a0,a2,a3,a4) are known) and the relative pose (R, t) has to be estimated.
Inspired by Tamas & Kato (2013b), we will reformulate pose estimation as a 2D-
3D shape alignment problem. Our solution is based on the correspondence-less
2D shape registration approach of Domokos et al. Domokos et al. (2012), where
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non-linear shape deformations are recovered via the solution of a nonlinear system
of equations. This method was successfully applied for a number of registration
problems in different domains such as volume Santa & Kato (2013) or medical Mi-
tra et al. (2012) image registration. In our case, however, the registration has to
be done on the spherical surface S, which requires a completely different way to
construct equations.

Any corresponding (X,x) Lidar-omni point pair satisfies (4.12). Thus a classical
solution of the pose estimation problem is to establish a set of such point matches
using e.g. a special calibration target or, if lidar points contain also the laser re-
flectivity value, by standard intensity-based point matching, and solve for (R, t).
However, we are interested in solution without a calibration target or correspon-
dences because in many practical applications (e.g. infield mobile robot), it is not
possible to use a calibration target and most lidar sensors will only record depth in-
formation. Furthermore, lidar and camera images might be taken at different times
and they need to be fused later based solely on the image content.

We will show that by identifying a single planar region both in the lidar and
omni camera image, the extrinsic calibration can be solved. Since correspondences
are not available, (4.12) cannot be used directly. However, individual point matches
can be integrated out yielding the following integral equation on the sphere S:∫∫

DS

xS dDS =
∫∫
FS

zS dFS (4.13)

DS and FS denote the surface patches on S corresponding to the omni and lidar
planar regions D and F, respectively. The above equation corresponds to a system
of 2 equations, because a point on the surface S has only 2 independent compo-
nents. However, we have 6 pose parameters (3 rotation angles and 3 translation
components). To construct a new set of equations, we adopt the general mechanism
from Domokos et al. (2012) and apply a function ω : R3→ R to both sides of the
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equation, yielding ∫∫
DS

ω(xS)dDS =
∫∫
FS

ω(zS)dFS (4.14)

To get an explicit formula for the above integrals, the surface patches DS and FS can
be naturally parametrized via Φ and Ψ over the planar regions D and F. Without
loss of generality, we can assume that the third coordinate of X ∈ F is 0, hence
D ⊂ R2, F ⊂ R2; and ∀xS ∈ DS : xS = Φ(x),x ∈ D as well as ∀zS ∈ FS : zS =

Ψ(X),X ∈ F yielding the following form of (4.14):

∫∫
D

ω(Φ(x))
∥∥∥∥ ∂Φ

∂x1
× ∂Φ

∂x2

∥∥∥∥ dx1 dx2 =
∫∫
F

ω(Ψ(X))

∥∥∥∥ ∂Ψ

∂X1
× ∂Ψ

∂X2

∥∥∥∥ dX1 dX2 (4.15)

where the magnitude of the cross product of the partial derivatives is known as the
surface element. Adopting a set of nonlinear functions {ωi}`i=1, each ωi generates a
new equation yielding a system of ` independent equations. Although arbitrary ωi

functions could be used, power functions are computationally favorable Domokos
et al. (2012):

ωi(xS) = xli
1xmi

2 xni
3 ,with 0 ≤ li,mi,ni ≤ 2 and li + mi + ni ≤ 3 (4.16)

Hence we are able to construct an overdetermined system of 15 equations, which
can be solved in the least squares sense via a standard Levenberg-Marquardt algo-
rithm. The solution directly provides the pose parameters of the omni camera. To
guarantee an optimal solution, initialization is also important. In our case, a good
initialization ensures that the surface patches DS and FS overlap as much as pos-
sible. This is achieved by computing the centroids of the surface patches DS and
FS respectively, and initializing R as the rotation between them. Translation of the
planar region F will cause a scaling of FS on the spherical surface. Hence an initial
t is determined by translating F along the axis going through the centroid of FS

such that the area of FS becomes approximately equal to that of DS. The summary
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of the proposed algorithm with the projection on the unity sphere is presented in
Algorithm 4.2.

Algorithm 4.2 The proposed calibration algorithm.
Input: 3D point cloud and 2D omnidirectional binary image representing the same

region, and the g coefficients
Output: External Parameters of the camera as R and t

1: Back-project the 2D image onto the unity sphere.
2: Back-project the 3D template onto the unit sphere.
3: Initialize the rotation matrix R from the centroids of the shapes on sphere.
4: Construct the system of equations of (4.13) with the polynomial ωi functions.
5: Solve the set of nonlinear system of equation in (4.15) using the Levenberg-

Marquardt algorithm

4.8 Evaluation on synthetic data

For the quantitative evaluation of the proposed method, we generated a benchmark
set using 30 different shapes as 3D planar regions and their omnidirectional im-
ages taken by a virtual camera, a total of 150 2D-3D data pairs. The synthetic
omni images were generated with a virtual camera being rotated in the range of
(−40◦ · · ·+ 40◦) and randomly translated in the range of (0 · · ·200), equivalent to
(0 · · ·1.4) meters, if we consider the template size as a 5m× 5m rectangle in 3D
space.

The algorithm was implemented in Matlab and all experiments were run on a
standard quad-core PC. Calibration errors were characterized in terms of the per-
centage of non-overlapping area of the reference 3D shape and the backprojected
omni image (denoted by δ ), as well as the error in each of the estimated pose pa-
rameters.

In practice, the planar regions used for calibration are segmented out from the
lidar and omni images. In either case, we cannot produce perfect shapes, therefore
robustness agaixnst segmentation errors was also evaluated on simulated data (see
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4.8 Evaluation on synthetic data

Figure 4.7: Translation errors along the x, y, and z axis. m denotes median error,
Omni. noise and Lidar. noise stand for contour error on the omni and 3D regions,
respectively. (best viewed in color)

Figure 4.8: Rotation errors along the x, y, and z axis. m denotes median error,
Omni. noise and Lidar. noise stand for contour error on the omni and 3D regions,
respectively (best viewed in color)
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Noise: 0% 8% 15% 10% 20%

δ : 2.4% 4.1% 5.5% 2.9% 3.7%

Figure 4.9: Synthetic contour noise examples. First column contains a result with-
out noise, the next two show contour noise on the omnidirectional image, while
the last two on the 3D planar region. The second row shows the δ error and the
backprojected shapes overlayed in green and red colors.(best viewed in color)

samples in Fig. 4.9): we randomly added or removed squares uniformly around the
boundary of the shapes, both in the omni images and on the 3D planar regions,
yielding an error around the contour of 5% -20% of the original shape.

Quantitative comparisons in terms of the various error plots are shown in Fig. 4.7,
Fig. 4.8, (each testcase is sorted independently in a best-to-worst sense). Note that
our method is quite robust against segmentation errors up to 15% error level.

4.9 Experimental validation

For the experimental validation of the proposed algorithm two different omnidirec-
tional camera setups are shown. In order to fuse the omnidirectional camera data
and the lidar scan both the internal and external parameters are needed. The inter-
nal parameters of the omnidirectional camera were determined using the toolbox
of Scaramuzza et al. (2006b). This internal calibration needs to be performed only
once for a camera, and the as output of this calibration process the four polynomial
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parameters of the camera was considered. The external parameters are computed
using the proposed algorithm.

4.9.1 Urban data registration results

The input data with the segmented regions as well as the results are shown in
Fig. 4.10 for a catadioptric-lidar and dioptric-lidar camera pairs respectively. As
test data was acquired in an urban environment, for segmentation common regions
like windows or doors could be used both in 2D and 3D data Goron et al. (2010b).

The omnidirectional images were captured with a commercial SLR camera with
a catadioptric lens and a omnidirectional mirror respectively. For the 3D urban
scene a custom lidar was used to acquire data similar to the one described in Tamas
& Majdik (2012b) with an angular resolution up to half degree and a depth accuracy
of 1cm. After the raw data acquisition the segmentation was performed in both
domains. For the 3D data after determining the parametric equation and boundaries
of the selected region, this was sampled with a uniform sampling in order to get
a homogeneous set of pointcloud. This initial set of point was transformed with
R0 and t0 into the Z = 0 plane, and the transformed point coordinates represent the
input for the right hand side of the (4.15) denoted with X. The x variable of the
left hand side of equation (4.15) is fed with the point coordinates of the segmented
omnidirectional image.

Once the output Ra and ta is obtained from Algorithm 4.2, the final transforma-
tion acting between the lidar and omni camera can be computed as a composite rigid
transformation using Ra, ta and R0, t0 respectively. The final computed transforma-
tion was used to fuse the depth and color data by reprojecting the pointcloud on
the image plane using the internal and external camera parameters, and thus obtain-
ing the color for each point in the 3D pointcloud. The method proved to be robust
against segmentation errors, but a sufficiently large overlap between the regions is
required for better results.
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Figure 4.10: Catadioptric and lidar images with segmented area marked in yellow,
and the fused images after pose estimation. (best viewed in color)

4.10 Summary and Outlook

A nonlinear explicit correspondence-less calibration method was proposed in this
work. The calibration is based on the 3D-2D registration of a common lidar-camera
region. The proposed method uses minimal information (only depth data and shape
of regions) and is general enough to be used in a great variety of applications. It has
been tested on a large synthetic dataset. The algorithm was also validated in real life
experiments with different cameras and with both extrinsic and intrinsic-extrinsic
calibration experiments. In this paper a new method for pose estimation of non-
conventional cameras is proposed. The method is based on a correspondence-less
registration technique, which allows reliable estimation of extrinsic camera param-
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eters. The algorithm was quantitatively evaluated on a large synthetic data set and
proved to be robust on real data as well.
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Chapter 5

Relevant Applications to 3D Position
Estimation

This chapter presents some indoor and outdoor applications related to the perception
of the environment. The theoretical background for these applications is detailed in
Chapter while the information related to the depth processing is based on Chapter .

In the first part of this chapter are introduces a navigation application with a
UAV in a structured indoor environment. Further on, the motion planning based on
parsed 3D environment information is presented for a single and dual arm robot. In
the last part of this chapter the details for the position estimation in a augmented re-
ality based application are presented Blaga & Tamas (2018); Militaru et al. (2016a);
Páll et al. (2015).

5.1 UAV Navigation in Structured Environments

5.1.1 Introduction

Unmanned aerial vehicles (UAV) are being increasingly investigated not only for
military uses, but also for civilian applications. Famous recent examples are UAV
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Figure 5.1: Simple quadcopter schematics, where Ω1, Ω2, Ω3, and Ω4 are the pro-
pellers rotational speed.

applications for package delivery services, including those by online giant Amazon1

and in the United Arab Emirates (Pavlik, 2014), or Deutsche Bahn’s exploration of
UAVs to control graffiti spraying2. More classical applications have long been con-
sidered, such as search and rescue (Beard et al., 2013; Tomic et al., 2012) or moni-
toring and fertilizer spraying in agriculture (Odido & Madara, 2013). Motivated by
this recent interest, we focus here on the automation of a low-cost quadcopters such
that they can perform tasks in structured environments without human interaction.
We employ the AR.Drone, a lightweight UAV widely used in robotic research and
education (Benini et al., 2013; Krajnı́k et al., 2011; Stephane et al., 2012).

5.1.2 Quadcopter Structure and Control

Quadcopters are classified as rotorcraft aerial vehicles. These mobile robots are
frequently used in research because of their high maneuverability and agility.

The quadcopter‘s frame can be shaped as an x or + and the latter is presented
in Figure 5.1. A brushless direct current motor is placed at each end of the config-
uration. The motors are rotating the fixed pitch propellers through a gear reduction
system in order to generate lift. If all the motors are spinning with the same speed,
Ω1 = Ω2 = Ω3 = Ω4, and the lift up force is equal with the weight of the quad-

1Amazon testing drones for deliveries, BBC News 2013
2German railways to test anti-graffiti drones. BBC News 2013
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Figure 5.2: Parrot AR.Drone schematics with and without indoor hull1.

copter, then the drone is hovering in the air. This motor speed is called hovering
speed Ωh. Four basic movements can be defined in order to control the flight of the
quadcopter.

5.1.3 Quadcopter Hardware and Software

The chosen quadcopter is the Parrot AR.Drone 2.0, see Figure 5.2 for a schematic.
It is a low-cost but well-equipped drone suitable for fast development of research
applications (Krajnı́k et al., 2011). The drone has a 1 GHz 32 bit ARM Cortex A8
processor with dedicated video processor at 800 MHz. A Linux operating system
is running on the on board micro-controller. The AR.Drone is equipped with an
IMU composed of a 3 axis gyroscope with 2000 ◦/second precision, a 3 axis ac-
celerometer with ± 50 mg precision, and a 3 axis magnetometer with 6◦ precision.
Moreover, it is supplied with two cameras, one at the front of the quadcopter having
a wide angle lens, 92◦ diagonal and streaming 720p signal with 30 fps. The second
camera is placed on the bottom, facing down. For lower altitude measurements an
ultrasound sensor is used, and for greater altitude a pressure sensor with ± 10 Pa
precision is employed.

Parrot designed the AR.Drone also for hobby and smart-phone users. Therefore,

1image based on: http://ardrone2.parrot.com/ardrone-2/specifications/
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the drone has a WiFi module for communication with mobile devices. The stabiliza-
tion and simple flight control (roll, pitch, yaw, and altitude) is already implemented
on the micro-controller and it is not recommended to make changes in the supplied
software. The quadcopter can stream one camera feed at a time together with all the
rest of sensor data.

5.1.4 Methodological and Theoretical Background

In this section, we present the methods taken from the literature that we employ
in this research project, with their theoretical background. Our goal is to fly the
drone autonomously in corridor-like environments by using only the sensors on the
AR.Drone.

In the mobile robotics field, the automation of vehicles needs to solve the local-
ization problem. In order to decide which type of localization should be used, the
available sensors must be known. The AR.Drone is not necessarily supplied with
global positioning sensors (GPS) and even if it is, the GPS can not be used indoor.
Hence, we chose vision-based position tracking based on feature detection, which is
presented in Section 5.1.5. This method will supply information about the relative
position of the drone and the target.

In particular, the desired flight direction is represented by the vanishing point, a
2D point on the image. The position of the detected point is going to be tracked, be-
cause it changes in a dynamic fashion due to the drone motion, and it is affected by
noise on the images. The chosen tracking methods are probabilistic state estimator
filters, detailed in Section 5.1.6. These methods support sensor fusion, meaning that
information from different sensors is combined. In our case, we fuse visual infor-
mation with IMU measurements, using to enhance the precision of the estimation.

5.1.5 Feature detection

The AR.Drone has two color cameras, one at the bottom facing down and the other
at the front, looking ahead. For the experiments we use the front camera.
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Figure 5.3: Single VP (left) detected in a corridor and multiple VPs (right) detected
when buildings are present.

The localization procedure should be general in the sense that no artificial changes,
such as landmarks should be made to the environment in order to track the position
of the quadcopter. Hence, the perspective view’s characteristics are analyzed on the
2D image. One of the basic features of a 2D projection of 3D space is the appear-
ance of vanishing points (VPs). The interior or the outdoor view of a building has
many parallel lines and most of these lines are edges of buildings. Parallel lines
projected on an image can converge in perspective view to a single point, called VP,
see Figure 5.3. The flight direction of the quadcopter is determined by this 2D point
on the image.

In order to obtain the pixel coordinates of the VP, first the image is pre-processed,
next the edges of the objects are drawn out, and finally the lines are extracted based
on the edges.

Pre-processing In order to process any image, we must first calibrate the camera.
Distortions can appear on the image due to the imperfections of the camera and its
lens. Our project is based on gray-scale images processing. Therefore we are not
focusing on the color calibration of the camera, and only spatial distortions are
handled. The calibration parameters are applied on each frame. The calibration
process has two parts: intrinsic and extrinsic camera parameters.

The general equation which describes the perspective projection of a 3D point
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Figure 5.4: Camera calibration, on the left the barrel distorted image, on the right
the calibrated image.

on a 2D plane is:

s ·
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where (u, v) are the projected point coordinates, s is the skew factor, and ~K is
a camera matrix with the intrinsic parameters, focal length fx, fy and the optical
centers cx, cy. These five parameters must be defined for a specific resolution of the
camera. [~R|~t] is a joint rotational-translational matrix with the extrinsic parameters,
and (X , Y, Z) are the 3D coordinates of the point in the world frame.

The spatial distortion is corrected with the extrinsic parameters. Barrel distor-
tion (Zhang, 2000) appears on the front camera, because the camera is equipped
with a wide angle lens. The distortion appears when an image is mapped around a
sphere, as shown on Figure 5.4. The straight lines are curved on the distorted image
(left) which is unacceptable for line-detection-based position tracking. The barrel
effect has a radial distortion that can be corrected with:

xb
c = xu(1+ k1r2 + k2r4 + k3r6)

yb
c = yu(1+ k1r2 + k2r4 + k3r6)

(5.1)

where (xu,yu) are the coordinates of a pixel point on the distorted image, r = x2
u+y2

u,
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and (xb
c ,y

b
c) is the radial corrected position.

The tangential distortion appears when the lens is not perfectly parallel to the
sensor in the digital camera. The correction of this error is expressed as:

xt
c = xb

c +[2p1xuyu + p2(r2 +2x2
u)]

yt
c = yb

c +[p1(r2 +2y2
u)+2p2xuyu]

(5.2)

where (xt
c,y

t
c) is the tangential corrected position.

The extrinsic distortion coefficients appear in (5.1) and (5.2), where kn is the nth

radial distortion coefficient and pn is the nth tangential distortion coefficient.
After obtaining the calibrated image some low-level intermediate pre-processing

can be applied. In particular, we will use:

• smoothing, which eliminates noise and small fluctuations on images, it is
equivalent with a low-pass filter in the frequency domain, and its drawback is
blurring the sharp edges;

• gradient operators, which sharpen the image and act like a high-pass filter in
the frequency domain.

Edge detection is based on gradient operators and it is considered to be a pre-
processing step. An edge on a 2D image can bee seen as a strong change of intensity
between the two surfaces i.e. as a first derivative maximum or minimum. For easier
detection, a gradient filter is applied on a gray-scale image. As this is a high-pass
filters, gradient operator also increases the noise level on the image. We choose the
Canny algorithm, it is a multi-step edge detector. First, it smooths the image with a
Gaussian filter, and then finds the intensity gradient of the image by using the Sobel
method. The Sobel algorithm is a first order edge detector, and it performs a 2D
spatial gradient on the image.

Line detection Sharp and long edges can be considered as lines on a gray-scale
image. The most frequently used line detector is the Hough Transformation (HT)
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(Kiryati et al., 1991). This algorithm performs a grouping of edge points to obtain
long lines from the output of the edge detector algorithm. The preliminary edge
detection may be imperfect such as presenting missing points or spatial deviation
from the ideal line. The HT method is based on the parametric representation of
a line: ρ = xcosθ + ysinθ where ρ is the perpendicular distance from the origin
to the line and θ is the angle between the horizontal axis and the perpendicular
line to the line to be detected. Both variables are normalized such that ρ ≥ 0 and
θ ∈ [0, 2π).

The family of lines, Lx0 y0 , going through a given point (x0,y0) can be written
as a set of pairs of (ρθ , θ). Based on our previous normalization, Lx0 y0 can be
represented as a sinusoid for the function fθ (θ) = ρθ . If two sinusoidal curves for
Lxa ya and Lxb yb are intersecting each other at a point (ρθab, θab), then the two points
(xa ya) and (xb yb) are on the line defined with the parameters, ρθab and θab. The
algorithm searches for intersections of sinusoidal curves. If the number of curves in
the intersection is more than a given threshold, then the pair (ρθ ,θ) is considered
to be a line on the image.

The Probabilistic Hough Transform (PHT) is an improvement of HT (Stephens,
1991). The algorithm takes a random subset of points for line detection, therefore
the detection is performed faster.

5.1.6 Feature tracking

The true position of a moving object cannot be based only on observation, because
measurement errors can appear even with the most advanced sensors. Hence, the
position should be estimated based not only on the measurements, but also taking in
consideration other factors such as the characteristics of the sensor, its performance
and the dynamics of the moving object. Position tracking of a moving object with
a camera is a well studied problem (Peterfreund, 1999; Schulz et al., 2001). In our
case the estimators are used to reduce the noise in the VP detection and to track the
position of the VP with higher confidence.
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The estimation process can be enhanced by sensor fusion, meaning that different
types of data are combined in order to have a more precise estimation of the current
state. The 2D coordinates of the VP on the video feed is one measurement data and
the other is the yaw orientation angle of the drone w.r.t. the body frame obtained
from the IMU.

5.1.7 Experimental part

The corridor following problem was described in (Bills et al., 2011; Gomez-Balderas
et al., 2013). A quadcopter should be able to fly through a corridor-like environment
by using in this problem only visual perception and the IMU, without using any ad-
ditional tags or changes in the environment. We extended the solution (Lange et al.,
2012) with different filtering algorithms and a simple control strategy, in order to
make the quadcopter autonomous not only in indoor but also in outdoor corridor-
like environments.

5.1.8 Perspective UAV vision

Earlier, we proposed to use the vanishing point (VP) in order to detect the direction
in which the quadcopter should fly. The VP is, by definition, the intersection of
parallel lines viewed in perspective. On each frame the edges of the objects are
detected as lines.

Image processing Our image processing algorithm finds the VP, which indicates
the end of the corridor. The input is the undistorted image and the output is the
measurement of the horizontal location of the VP. The image processing algorithm
has three steps: edge detection, line detection, and filtering.

For edge detection we used the Canny (Canny, 1986) algorithm, see Section
5.1.5, which is known to have good detection, good localization and minimal re-
sponse. The detection is considered to be good because the probability is low for
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(a) The red dashed lines are not useful to
find the direction of the corridor(left) or
the direction of the railway (right).

(b) The recognized lines with orientation
angles θ and λ less than 10◦ are ne-
glected in the VP detection procedure.

Figure 5.5: Illustration of VP and VP filtering.

Figure 5.6: VP detection in corridors: darker gray rectangle is the VP observation,
and the lighter gray rectangle is the estimate of the VP, with the white lines are the
detected edges, see Section 5.1.9.

both marking false edges and failing to mark real ones. Moreover, the good local-
ization criterion means that the marked edge is close to the center of the real edge.
The minimum response property means that an edge should be marked only once,
while image noise should not return false detection. The input of the Canny algo-
rithm is a grayscale version of the original image and the output image will contain
only the detected edges.

The next phase handles the extraction of long edges by using the PHT algorithm
presented in Section 5.1.5. These lines are filtered by their orientation angle, be-
cause not all the edges on an image are useful to determine the flight direction, as
shown in Figure 5.5a by the red dashed lines. We considered the almost horizontal
and vertical lines as noise (not useful for VP detection) in the line detection phase.
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Hence, all the detected lines having angles in 0±λ , π ±λ or π

2 ± θ and −π

2 ± θ

are neglected, as presented in Figure 5.5b where the tuning parameters, λ and θ

are less or equal with 10◦. Furthermore, we divided the image plane into a 23×33
grid and searched for the cell which contains the most intersections obtained from
the filtered set of lines. This cell, also shown in Figure 5.6, has high probability to
contain the VP. The center of the cell is the observed VP, and will be used as an
input for the Estimator node.

The PHT threshold refers to the minimum number of detected intersections, see
Section 5.1.5 for details. The minimum line length is the threshold for the number of
points that can form a line. The maximum line gap is the only parameter that has to
be changed for the two different environments: indoor and outdoor. This parameter
limits the possible gap between two lines, for which they can be considered as one
line.

Ground truth detection It is essential to have a ground truth, in order to evaluate
and compare different approaches and tuning setups. In our case, we must know
where exactly is the end of the hall on each frame. For this reason, we decided to
place an easily distinguishable object down the hall. The Ground truth detection is
not part of our automated flight method. We are using it only in offline mode, to
process the logged flight data and evaluate the algorithm.

The tag is composed of tree colored stripes with the same size: the middle one
is yellow and the two on the sides are orange. First, the calibrated image goes
trough a noise reduction process because of the different brightness values for the
same color, while preserving edges. In the next phase we identify the orange and
yellow regions with their properties: orientation, centroid, contour, and area. Then
we search for the regions of orange, yellow, and orange color ”code” as mentioned
above. The centroid of the yellow rectangle is considered to be the location of the
end of the corridor.
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5.1.9 VP tracking

The observed VP coordinate is processed by the Estimator node and the output is
the estimated horizontal position of the VP. We need position estimation to filter out
faulty VP detection caused by noise on the image and to perform fusion. We are us-
ing the three motion models, see Section 5.1.6 to describe the horizontal movement
of the VP measurement. The linear Kalman filter is implemented with the linear
constant velocity model. The motion of the VP is highly nonlinear, therefore we
implemented nonlinear filters: the extended Kalman filter, the unscented Kalman
filter, and the particle filter. The nonlinear filters were tested with the linear and the
two nonlinear models, specifically the constant velocity model extended with the
yaw orientation angle and the constant acceleration model.

5.1.10 Control

After having the estimated location of a mobile robot, it should perform its task, in
our case the quadcopter should fly along the desired path. The motion of the robot
must 1be regulated with a controller.

We chose a simple strategy,

uk =

{
0 , if ek < |tr|

sign(ek) · |umax| , other case

where, uk is the control signal at time k, ek is the error, and umax is the maximum
value of the control signal and tr is a threshold value.

We aim to control the horizontal position of the VP on the image, which con-
sequently will generate the desired trajectory and our control strategy is based on
the switching method (Liberzon, 2003). We are switching between 2 controllers,
one with higher priority and one with lower priority. The high priority controller
regulates the orientation of the drone and it is called yaw control. The low priority
controller regulates the lateral translational position adn it is called flight control.
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Figure 5.7: The control loop is composed of the quadcopter as the system , the
estimator, and the controller.

Figure 5.8: Drone controlled with the switching method. First, the drone corrects
the θ angle (red arrow) while hovering. Next, the roll angular velocity is controlled,
which produces a lateral translation, in function of the distance between the vanish-
ing point (VP) and the center of the image (CI), while the drone flies forward with
a constant velocity. The trajectory (black line) approximately follows the middle of
the hallway in this way.

The block diagram of the control loop is shown on Figure 5.7. The practical
functionality of the controller is presented in Figure 5.8, where the quadcopter is
moved from the center of the hall and its yaw angle is not aligned with the reference
angle.
Yaw control

We defined the initial position of the drone, where the front camera is looking
down the hall and the drone is positioned on the middle of the corridor. In the
initialization stage, the rotational angle yaw around the Z axis, θ is fixed and con-
sidered to be the reference signal for the controller. In regular mode, the θ control
holds the angle within a small range around this reference by using a maximum gain
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uθ = 0.02. This is a prerequirement for the flight control sage. The measurement of
θ is obtained form the navigational data. The yaw angle can suffer from drift, but it
maintained fine in our experiments
Flight control

The flight controller generates the translational velocity commands, which are
sent to the drone. The lateral movement is controlled with a maximum gain upitch =

0.015, while the forward movement is constant, uroll = 0.065. Moreover, the con-
troller is responsible with landing the UAV in case the image processing algorithm
dose not find the end of the corridor. The drone is landed if on 20 consecutive
frames no VP can be observed. This situation can happen in case the drone is at
the end of the hall (facing the wall, so 0 lines detected), but this is also a safety
measurement when the drone looses sight of the end of the hallway.

5.1.11 Indoor and outdoor results

In this section we compare the VP detection and estimation performance between
the indoor and outdoor parameter setup in the detection phase of the algorithm. The
experiments were carried out in an outdoor hallway-like environment where we
compared both indoor and outdoor parameter settings. We are not investigating the
performance of disturbance rejection due to different illumination and wind speed.
We only aim to reduce the noise in the VP position caused by the increased texture
complexity outdoor compared to an indoor scene.

The increase of the precision in estimation from the LKF to the UKF can be
found in Table 5.1, where the linear simplified model was used, and the values
represent the error calculated from the difference between the ground truth and
the estimation, tR is the elapsed time while one estimation is done, std is standard
variation. The results are showing an increase of estimation performance for the
UKF, but also reveals longer execution time weakness compared to the LKF.
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Table 5.1: VP estimation performance errors with LKF and UKF, in case of linear
model and outdoor flight with in- and out-door detection parameters.

Indoor setup Outdoor setup
LKF UKF LKF UKF

std [px] 22.34 6.29 19.40 8.52
mean [px] -34.73 -2.26 -11.22 2.65
mode [px] -76.52 -17.97 -55.49 -16.43
median
[px]

-30.17 -1.31 18.83 6.79

tR [ms] 0.19 0.48 0.19 0.49

5.2 Single Robot Arm Path Planning

5.2.1 Introduction

An emerging field within robotics is that of service robots especially the ones giving
the opportunity to cooperate with humans. The human-robot interaction in the cur-
rent state is mainly representative in the indoor environment, where the interaction
with other objects is must. The object in this context can be defined as a physi-
cally separable union which is independent from its environment, such that it can
be moved separately from the rest of its surroundings. Two main directions are char-
acterising the human-robot interaction with respect to object handling: the object
perception and object manipulation. The first part is mainly focusing on the object
separation, i.e. segmentation while the second part is dealing with the grasping and
planning in the 3D space.

The object segmentation from its surrounding is not always a trivial task: several
research work from the computer vision domain are focusing on this problem from
decades. A common approach for solving this problem is the passive segmentation,
the camera parameters relative to the object are not modified. However such an ap-
proach may have several drawbacks, especially when one has to deal with complex
scenes, such as the human environment in general Holz et al. (2014). Also a com-
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Figure 5.9: The 7DoF robot arm model with the 3D depth sensor mounted on the
top of it

mon problem for the segmentation and scene interpretation tasks is related to the
computational speed and accuracy of the object boundaries. A possible solution to
overcome these limitation is the active perception approach which allows change in
the camera parameters and even the interaction with the scene in order to gain more
reliable information about this Bajcsy (1988a).

More generally, the concept of active perception can be found also in the human
reasoning: one might move an object or move around an object in order to gain more
information about this Herbst & Fox (2014). In case that one has a movable camera,
i.e. a camera mounted on a robotic arm can take advantage of this extra degree of
freedom, and can use it to gain getter representation about the surrounding objects,
as this might be often needed. Nor the humans nor the surrounding scene cannot
be expected to perform by itself a movement which helps the perception system to
gain extra information, thus this has to be done by the robot itself.

These ideas motivate the introduction and usage of the active perception concept
for the human-robot interaction Sankaran et al. (2013). Having the possibility to
choose the camera external parameters for the perception system, i.e. move around
the camera being mounted on a robotic arm, this leads to the ability of the robot to
choose the way in which reasons about the working space.

In this paper we describe the method that we developed for an eye-in-hand mo-
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bile manipulator development containing a 7 degree-of-freedom (DoF) robotic arm
used for object handling. The main contribution of this work was the development
of kinematic setup for this device as well as the object detection and handling in the
3D working space.

In the first part of the paper we briefly describe the state of the art methods
used for object detection and handling in indoor environment with mobile robotic
manipulators. Then we describe the details of the setup that we used in order to
develop the necessary real life experimental setup. Further on we show the details
both for the object detection as well as the planning approach for the object handling
problem. Finally, the paper is concluded with the results of these investigations.

5.2.2 Problem description

The problem of object handling in the human-robot interaction context is far from
being trivial, several aspects needs to be considered in order to have a solution to
this problem Holz et al. (2014). Different approaches arise from either the camera
mounting position with respect to the robot arm (i.e. on-board or off-board), the
degree of clutter in the scene, or the planning approach (deterministic vs. proba-
bilistic). A short overview of the related work in the main literature is presented in
the next section.

5.2.3 3D active sensing

The scene perception using active sensing approach is not a new concept, it dates
back at least to the 80’s Bajcsy (1988a). Both the work in the 2D and in the 3D
part has been extended especially in the mapping domain, where the map extension
problem is referred as frontier based mapping Herbst et al. (2014).

In our approach we used 3D information sensing, so the in the next part we
focus on the related literature. Also in the part of the research an important question
is related to the best view selection from the scene, which is done for example
by Potthast et al. Potthast & Sukhatme (2014), by searching each depth points back
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projected ray how much contribution has in terms of information gain. An extension
to a single point planning approach is used in Atanasov et al. (2013), where multiple
position plans are computed in a single step, however the viewpoint selection and
the path planning are done offline.

For dense feature matching a good overview can be found in Herbst & Fox
(2014). In this paper the authors deal with a semi-complete scene map for which
further information is gather in order to enhance its completeness. A similar eye-in-
hand depth range sensor approach is presented in Monica et al. (2016): a dense map
is generated with a projected light sensor and in the mean time a reasoning about
the scene object is performed. This approach is similar to the one presented in
the current paper too: an eye-in-hand 3D sensor for scene interpretation and object
handling.

5.2.3.1 Planning with 7DoF arm

Object manipulation and grasping with robotic arm has a long history in the robotics
community. There was a paradigm shift during the time from the deterministic way
of planning such as the A∗ towards the probabilistic planning methods in the main
literature such as the Rapidly-Exploring Random Trees. A good overview of these
techniques can be found in the book of LaValle LaValle (2006).

A similar problem to the one discussed in this paper can be found in the works
Hirano et al. (2005) focusing on planning issues in a cluttered scene and Zollner
et al. (2004) showing demonstrations for a dual-arm planning problem. Our work
is based on the concepts described in Kanter (2012), which was developed within
Robot Operating Systems (ROS) using the out-of-box planning algorithms such as
the Open Motion Planning Library (OMPL) presented in Sucan et al. (2012). Some
other variants for planning algorithms can be found also in Hauser (2013).
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5.2.4 Arm motion planning

Starting with a 7 DoF arm the development of the the forward and inverse kinemat-
ics is not trivial any more, thus approximate or sample based solutions such as the
Rapidly–Exploring Random Tree (RRT) are often used LaValle (2006). This is why
we adopted such a solution for our setup too.

5.2.4.1 Low level interface

The low level libraries for the Cyton arm is based on a action-server architecture,
which communicates with the serial chained servo motors from the joints and is
interfaced to the computer via the USB port.

At the motor driver level, we reused the already available ROS Dynamixel pack-
age, which could be customised in a flexible way in order to communicate with each
joint individually by assigning an identifier (ID) to each motor in part. In the next
level of control we used these references to address the physical joints of the arm
Fekete (2015).

5.2.4.2 Building the kinematics model

For the construction of the kinematics model of the robot arm we used two steps.
The first one was building the physical structure based on the joint-link description
language specific to the ROS environment. Next based on this description we con-
figured the planning module together with the low level drivers in order to have a
fully functional model for the motion planner.

For the first part of this task, i.e. the construction of the physical description we
based our work on the existing models parameters from the commercial robot soft-
ware package as well as the predefined universal robotics description from (URDF)
for this type of arm presented in Kanter (2012). The later model contains two dif-
ferent module: one for the arm with rotational joint controls and one for the gripper
with prismatic joint. The module controls are based on the individual joint level
controllers and state feedback nodes for each node.
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Figure 5.10: The processing pipeline for the plane extraction algorithm

5.2.5 Depth information preprocessing

Having a point cloud from the camera, we need to search for our object in it. The
searched object can be described either as a mathematical model (cylinder, sphere)
or as another point cloud. In both cases, we desired to retrieve from the scene only
the points that belong to the object. Depending on the description of the object and
the restrictions about the scene contents, the following algorithms can be consid-
ered.

5.2.6 Plane extraction

The first scene we considered was a bottle standing on a tall box in the shape of
a cuboid. The bottle had a cylindrical shape and the box can be seen as a set of
planes. If we eliminate the points that belong to the box, we can obtain the points
belonging to the cylinder.

The box was inside a room and the camera sensed other objects, such as walls,
chairs etc. that were behind the box. The arm is supposed to grab the bottle, so we
can ignore the points that are outside of the arm’s working space. In order to remove
the background, we used a PCL pass through filter that keeps only the points that
have their z coordinate between 0.5m and 1m.
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After the filtering, the point cloud contained only our region of interest: the
box and the bottle. From this, we could extract all the planes. Then most of the
remaining points were belonging to the bottle. For this purpose, we used one of
the planar segmentation algorithms provided by PCL. Providing a point cloud, the
algorithm detects a group of points that belong to the same plane. By repeatedly
applying the algorithm, we can remove all the planes in the scene.

The next step is finding the cylinder’s parameters (the cylinder axis and radius).
This requires fitting the remaining points to the mathematical model of a cylin-
der. We used the PCL cylinder segmentation algorithm, which is similar to the
planar segmentation described above. The RANSAC was chosen for the search
method, the distance threshold (maximum distance between the points and the
cylinder model) was set to 2cm. We configured the searched cylinder’s radius to
be between 1cm−5cm (the bottle’s radius was about 2.5cm).

The algorithm works the same if there is a sphere instead of the cylinder. The
only difference is the fitting step, in which we use the PCL sphere segmentation,
with the following parameters: RANSAC search method, the distance threshold of
2cm and the radius between 5cm− 10cm (the sphere had a radius of about 7cm).
This algorithm has best results when the scene contains planes and, by removing
them, most of remaining points belong to our object.

5.2.7 Region growing segmentation

This algorithm can be used to detect the object in a more complex scene, where
there are many objects, which do not necessarily have a plane surface. Our program
is designed to search for a model (cylinder or sphere) in this environment.

The Point Cloud Libray (PCL) region growing segmentation algorithm divides
the point cloud into disjoint sets of points which belong to the same smooth surface,
called clusters. In other words, it separates the smooth surfaces from the scene.

But what is considered a smooth surface? To answer this question, the algo-
rithm uses the concept of surface normals. Consider that a surface represents the
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boundaries of a 3D object. The surface normal is defined for each point as the line
perpendicular on the surface in that point. A line is perpendicular on the surface in
a point if it is perpendicular on the plane that is tangent to the surface in that point.
Therefore, the problem is reduced to estimating the tangent plane of the point cloud
in each of its points. In order to find the tangent plane in a point, the PCL normal
estimation algorithm searches for the neighboring points and finds the plane that
minimizes the sum of distances from the points to that plane. The plane normal can
be computed easily from the plane’s coefficients.

A surface is considered to be smooth if, for each pair of two neighboring points,
the tangent planes are similar, so their normals have a similar orientation. The
”similarity” of normals is measured using the angle between their direction vectors.

But the angle between normals may not be enough to determine if the surface is
smooth or not. Considering the following situation: a cylinder standing vertically
on a plane. We would expect that the plane’s points’ normals to be vertical, and
the cylinder’s points’ normals to be horizontal. But that does not happen in our
case. The normals at each point are approximated using the neighbors of that point.
The points of the plane that are very close to the cylinder will have their normals
influenced by the points of the bottle. And the points of the cylinder that are close to
the plane will have their normals influenced by the points of the plane. Therefore,
the plane’s points’ normals will gradually become more and more horizontal as
we get closer to the cylinder. Hence, if the algorithm was based only on angles
between normals, it could consider the area between the two surfaces to be smooth,
and therefore the cylinder and the plane would belong to the same smooth surface,
which is not true.

In order to divide the scene into smooth surfaces, the algorithm uses the region
growing approach. Starting with a region containing only one point, called the
seed, the alogithm expands the region by adding neighboring points that satisfy
the smoothness constraints. When the region cannot be extended anymore (all the
neighbors would violate the smoothness constraints), the cluster is complete, and
the algorithm starts again with a different seed, until there are no more points in the
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cloud that have not been processed.
Having the groups of points that form smooth objects, we iterated through them,

trying to fit each cluster to the cylindrical model. If most of the points of a cluster
were fitted to the model, then we consider the object to be found.

5.2.7.1 Correspondence grouping detection

Another approach for object retrieval is the recent correspondence grouping one
suggested in Aldoma et al. (2013). This method aims for detecting similarities
between two or more objects. In this case we will use it to find a certain 3-D object
(model) in a scene by grouping the correspondences in clusters, from which the
pose will be extracted.

The descriptors for the keypoints are used to accurately determine the corre-
spondences between points and hopefully find the match of the model in the scene,
and must be robust to noise, resolution variation, translation and rotation. The al-
gorithm that we used was SHOT (Signatures of Histograms of Orientations), which
proved to be robust enough for the experimental part.

In the last step the correspondence grouping algorithm classifies all the corre-
spondences that are thought to belong to the model into clusters, and rejecting the
ones that are not. For this we have used the Hough algorithm which relies on a
Hough Voting process, that outputs the rotation matrix and the translation vector.
This aims at gathering evidence about the existence of the initial object in the plane
by voting if enough feature correspondences are present.

Unfortunately this method seems to run for several tens of seconds which is far
larger the the most unfavorable one from the two other methods, so we decided not
using it for our real life experiments.

5.2.8 Experimental validation

In the first stage of our investigations we used also simulated robot arm, in order
to test the object handling algorithms. In the next steps we performed out real life
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experiment on a Cyton Gamma R2 seven degree of freedom robot arm and using an
Asus Xtion Pro depth camera in a typical indoor environment. In the first part of the
real life experiments we had to determine the external camera parameters relative
to the gripper fingers of the robot arm.

5.2.8.1 Hand-eye camera calibration

The camera calibration in general has a broad interest in the computer vision and
robotics community, several approaches existing for the intrinsic and extrinsic pa-
rameter estimation problems including the specific hand-eye calibration problem
dating back already at the 80’sTsai & Lenz (1988).

In our approach to the calibration of the depth camera mounted on the arm and
the gripper frame is based on a relative calibration to a fixed frame in space, as
this is shown in Figrure 5.11. The main ideas is to use a calibration pattern as an
external reference with an internally calibrated depth camera. The position of this
checkboard and fixed frame with respect to the depth camera can be determined with
standard methods from the computer vision field taking into account the physical
size of the pattern.

Denoting with CTF the transformation from the camera to the fixed frame this
can be used later on in computation of the GTC (gripper-camera transform) in a
closed kinematic chain. The BTG transformation from the base frame to the gripper
frame can be determined using the kinematic model of the robot. Further more, by
moving the robot arm to at least four fixed corners of the calibration pattern, the
position of the base with respect to the fixed frame BTF can be determined using
a singular value decomposition (SVD) approach. Having all these transformations
in the kinematic chain, the searched gripper camera transformation can be obtained
using:

GTC =
(

BTC
)−1
×B TG (5.3)

By computing this transformation between the gripper and depth camera coor-
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Figure 5.11: The 7DoF robot arm model.

Table 5.2: Detection rate for the scene objects with a single and multiple cylindrical
and spherical object in the scene

Cyl.1 Cyl.2 Sph. Cyl.1 all Sph. all
Plane ext. 5/5 4/5 5/5 4/5 5/5
Reg. grow 3/5 2/5 5/5 4/5 5/5

dinate frames the camera can be integrated in the planning process easily.

5.2.8.2 Scene object retrieval

Further on we present the results of our investigations related to the object retrieval
from the working space using the 3D perception pipeline described earlier.

In the Tables 5.2 we summarized the results of our test cases for the detec-
tion rate of the suggested approaches from five different viewpoints about the same
scene. The first columns contain the results from the scene with only one object of
interest, while the last two columns show the results for the retrieval focusing on a
specific type of object in a multi-object scenario.

114



5.2 Single Robot Arm Path Planning

Table 5.3: Standard deviation of the object centre used during the recognition from
several viewpoints

Cyl.1 Cyl.2 Sph. Cyl.1 all Sph. all
Plane ext. 0.03 0.43 0.01 0.48 0.55
Reg. grow 0.42 0.03 0.49 0.02 0.41

Finally, the Table 5.3 summarizes the results from the standard deviation for the
detected object’s geometric center using different viewpoints about the same scene
by moving the arm around the objects.

As one can observe the region growing method tends to be more robust, although
the runtime of this is slightly larger than the plane extraction variant for the same
scenes.

5.2.8.3 Planning benchmark

In order to test the performance of the planning algorithms on the arm, ten points
from the configuration space have been chosen. The test have been carried out for
the same points in two scenarios one unconstrained which contained no obstacles
and one constrained in which an obstacle has been placed.

In the Table 5.4 we summarized the runtime performance analysis for our ex-
perimental setup using a standard laptop. As one could expect, the planning time
with a constrained working space is greater than the one without collision objects
in the scene for the sampling based algorithms. The most affected variants are in
this case the RRT and its derivatives. The planning times for each algorithm are less
then 5 seconds, which in this case is the minimum for the robot arm displacement
in general.
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Table 5.4: Planning algorithms average runtimes in seconds for the 7 DoF arm

RRT RRT–Connect KPIECE PRM EST
Unconst. 2.18 4.13 2.48 2.24 2.13
Constr. 3.15 4.96 2.77 2.45 2.567

5.3 Dual-Arm Cobot Path Planning

5.3.1 Introduction

Recent advances in the industrial domain (for example Industry 4.0) have opened
up a multitude of opportunities for robots, as they are expected to perform the tasks
either on their own or along other humans, as coworkers Militaru et al. (2016a,
2017); Páll et al. (2016); Tamas & Baboly (2017). In such cases, most of the time
it is expected from robots to adapt to the environment and to take decisions on
their own. In practice however, sensor and motor inaccuracies, noise–affected data,
algorithm misbehaviours, improper classifications or object occlusions are just a
few of the challenges that the robot has to deal with in the decision making process.

A very useful framework to handle sensing uncertainty in particular is active
perception, which closes the loop between the sensing and control modules of the
robot by taking control actions with the explicit purpose of obtaining more infor-
mative data from the sensors.

In this paper the following active perception problem is considered. A robot
is working in a factory and has the task of sorting objects of different shapes that
travel on a conveyor belt. The classification of the objects is done using a sensor the
robot is equipped with, and due to sensor inaccuracies, multiple scans are required
for a proper classification. The robot has a set of poses (viewpoints) from which it
scans the conveyor belt. It starts from an initial viewpoint and can move between
viewpoints in order to gain more information about the objects.

Our main contribution is a solution of the sorting task in the framework of par-
tially observable Markov decision processes (POMDPs). The step of modeling the
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problem as a POMDP is essential, and we describe it in detail. Object classes are
uncertain so a probability distribution (belief state) over them is maintained, which
is updated using the observations. At each step, the robot has the option of ei-
ther changing the viewpoint to make a new observation, or to decide on the class
of the object at the end of the belt, sort it, and advance the belt. A sequence of
these actions is planned over a long horizon so as to maximize a cumulative sum of
rewards assessing the quality of sorting decisions, using a state-of-the-art planner
called DESPOT Somani et al. (2013).

A key feature of the method is that it allows the robot to observe multiple po-
sitions from the conveyor belt at the same time, from each scan. This allows us to
accumulate and propagate information between positions when the conveyor belt
advances, so that the robot already starts with a good estimate of the new class at
the end of the belt. This reduces the total number of steps needed to sort the objects,
while still maintaining a high classification accuracy.

In addition to simulation results, we present also real experiments with a Baxter
robot equipped with an ASUS Xtion 3D sensor mounted on one of its wrists. The
objects being sorted are light bulbs of different shapes, and their classification is
carried out the data coming from the sensor in the form of point clouds. For both
simulation and on the physical robot, we report two sets of experimental results. In
the first case the robot observes only a single object from the conveyor belt without
propagating the belief states, while in the second case the observations are extended
to two positions and the propagation strategy is adopted.

Related work: References Aloimonos et al. (1988); Bajcsy (1988b) provide
early approaches toward active perception. Since then, the field has grown tremen-
dously, as the availability and range of applications of robotic platforms and sensors
has increased.

In active perception, there are two ways to perform detection: passive and ac-
tive. In the former, the observation viewpoint is changed, leaving the state of the
objects unaltered, while in the latter, the objects are actively manipulated in order to
improve classification. References Atanasov et al. (2015); Patten et al. (2016) are
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Figure 5.12: Belief state and class vector state before propagation

examples of the former, while Aleotti et al. (2014) provides a good example for the
latter case. The method proposed in this paper uses the passive approach.

The meaning of this second function is the following. As mentioned, the robot
is concerned only with a limited number, H, of positions from the conveyor belt. A
motion action leaves the classes unaltered (first branch). However, when a decision
action is executed the first object is removed from the conveyor belt, its class is
eliminated from the vector of classes and each of remaining values is shifted with
one position (second branch), except the last one which is sampled from a uniform
distribution (third branch); see also Figures 5.12 and 5.13. Note that in reality, the
class will be given by the true, subsequent incoming object, but since the POMDP
transition function is time-invariant, this cannot be encoded and we use a uniform
distribution over the classes instead.

5.3.2 Active perception pipeline

In this section, the components of the active perception pipeline are presented. The
active perception pipeline has two main modules: a detection module, having multi-
ple submodules, and the planning module. The detection submodule is composed of
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Figure 5.13: Belief state and class vector state after propagation

the acquisition, preprocessing and classification submodules. Several components
of the pipeline are similar to the ones presented in Mezei & Tamas (2016), what is
different is the classification algorithm and module used, and most importantly, the
presence of a planning module in the pipeline.

The robot performs 3D scans of the conveyor belt in order to detect the objects
that are being transported, which for our particular application are light bulbs of
different shapes. The acquired data is in form of point clouds Rusu & Cousins
(2011d) and tasks such as saving, loading, are handled by the acqusition submodule.

The classification module receives as input a prepared point cloud, correspond-
ing to a candidate light bulb and has the role of classifying it. A prior training step
is necessary, in which the uniformly sampled point clouds containing the light bulb
classes of interest for the application are used. The Viewpoint Feature Histogram
(VFH) Rusu et al. (2010c) provides descriptors containing information about the
shape of the cloud and also viewpoint information. During training, a kd-tree that is
built from the clouds taken from each observation point correspond to each class of
light bulb. The classification becomes a nearestneighbour search problem, in which
for a candidate cloud a list of the trained clouds is returned sorted by the shortest
distance to the candidate cloud.
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The crucial component of the pipeline is the planning module, which has the
role of finding a good sequence of observations, which improves the likelihood of a
proper sorting for a candidate light bulb. The planning module solves the POMDP
problem using the DESPOT Somani et al. (2013) algorithm, using an online ap-
proach that interleaves the planning and plan execution stages. The belief state is
updated with the results coming from the detection module. The planning module
returns an action, either of the motion or of the decision type, which is processed
and further transmitted to the motion planning and execution modules specific to
the robotic platform that is used.

5.3.3 Results

The Baxter research robot developed by Rethink Robotics has been used for both
simulated and real experiments. An ASUS Xtion 3D sensor was mounted on one of
the robot’s wrist, while a conveyor belt, transporting different models of light bulbs,
was placed in front of the robot. The motion planning tasks for the arms were
carried out by solvers specific to the robot platform. The functionalities of PCL
(Point Cloud Library) were used to construct the modules that handle all aspects
regarding the point clouds acquired by the sensor. The active perception pipeline
was developed in C++ and Python and was made to be compatible with ROS (Robot
Operating System), while Gazebo was used for simulation purposes.

In each type of experiment an observation probability distribution was com-
puted experimentally beforehand for every vertex of the graph. From each vertex,
several scans were performed for each true class of light bulb. After preprocessing
each scan, the segmented bulbs were classified using the presented method with the
results being recorded in tables, and the observation probability distribution was
computed as the fraction of the experiments in which each class (correct or incor-
rect) was observed. Table 5.5 exemplifies the observation probability distribution
for the elongated object (true class), when observing the end of the belt, for a few
representative viewpoints. It shows how likely is to observe the respective class
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when looking at it and how likely is to misclassify it as one of the other classes,
from different viewpoints. In the extended case, Table 5.6 shows how likely is to
observe the different combinations of bulbs on the last two positions of the belt,
from the same viewpoints as in Table 5.5.

Point
Pr(o)

elongated livarno mushroom standard

64 0.6 0.2 0 0.2
43 0.5 0.3 0.1 0.1
87 0.8 0.1 0.1 0

Table 5.5: Observation probability distribution for a single bulb when the underly-
ing object is of the elongated class

Pt
Pr(o)

el p1 liv p1 mshr p1 strd p1 el p2 liv p2 mshr p2 strd p2

64 0.3 0.6 0.1 0 0.4 0.1 0.4 0.1
43 0.1 0.8 0 0.1 0.5 0.2 0.2 0.1
87 0.2 0.7 0 0.1 0.2 0.2 0.6 0

Table 5.6: Probability distribution when observing two positions, when a livarno
bulb is on the first position and an elongated bulb is on the second one

5.3.4 Results on the real robot

An illustration of the real setup and experiment is given in Figure 5.14 are shown re-
spectively the quality of the classification and the number of required steps. A video
of the robot can be found at http://community.clujit.ro/display/
TEAM/Active+preception
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Figure 5.14: A real robot performing the sorting of light bulbs

5.4 Augemented Reality Based Monitoring

5.4.1 Introduction

The main challenges of the current manufacturing era are related to the high indus-
trial performance requirements with relatively fast production life cycles and severe
environmental constraints. The source of these problems relates to the loose vertical
integration of digital trends within a manufacturing system with the natural demand
for flexibility. One of the key components of the manufacturing execution systems
relates to the visualization problem, incorporating the use of augmented/virtual re-
ality devices for industrial workers Perzylo et al. (2016).

The augmented reality term, according to the definition in Milgram et al. (1994),
refers to the addition of virtual objects to real world scenes in order to extend the
capabilities of scene visualisation. In order to achieve this, one of the main require-
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ments of an AR system is to align (spatially register) the objects of the real scene
with the virtual ones. Besides the entertainment market, AR in tourism, real es-
tate, marketing and remote maintenance is also playing an important role Palmarini
et al. (2018). Even though in the last 50 years the AR technologies emerged contin-
uously, they are still in development for the industrial application field. This trend
is changing fast in the Industry 4.0 context Weyer et al. (2015), mainly due to the
remote assistance and maintenance applications. The digital twin concept integrates
also well from the new industrial trends into the AR framework: this can be directly
imported as visualisation modules for the applications. Thus, they are getting an
important role in the chain of manufacturing execution systems (MES).

Several advantages of the AR systems were proved recently to be of major im-
pact in the MES systems, including safety, precision, and learning curve of the
operators. From the safety side, according to the International Labor Organization,
every minute a work accident is happening, thus every step in the direction of re-
ducing this trend is of major impact on the human workforce. As the AR has a
positive impact on the safety in MES, this can reduce the rate of accidents Tatic &
Tesic (2017).

In terms of Key Performance Indicators (KPIs), the increased precision and re-
duced assembly time with AR for safety critical aerospace industry was already
proved in the 90’s Mizell (2001). Thus, AR applications are favourable also for
optimising the production indicators on a large scale MES Wang et al. (2018).

On the training side of the operators, a recent study Radkowski et al. (2015)
highlights the fact that, with the introduction of the AR systems, the learning curve
got enhanced for the remote operators, and first-time fix rates increased by 90%. For
the assembly or remote assisted training applications, the impact of introducing AR
solutions into MES has one major benefit: suggestive 3D visualisation is appropriate
for the human perception. An example of such a visualisation is visible in Figure
5.15, containing a partially assembled light bulb in the workspace of a collaborative
robot, augmented with the final view of the same object.

The widespread of the AR solutions in the MES systems is expected to have an
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overall positive impact. In this paper, the authors highlight some recent AR trends
within the MES, as well as describing use cases with different AR devices/technolo-
gies. These were successfully integrated into customer specific applications.

5.4.2 Application overview

Our aim was improving day-to-day manufacturing operations by developing human-
robot collaboration systems with augmented reality. One of the main goals is the 3D
vision enhancement of industrial operators with the help of head-mounted display
(HMD) equipment, due to being an eye level device type which eases instantaneous
perception of the scenario, mixed with AR.

Having used augmented reality, virtual elements for the assembly sequence of
the final product can be visualised before beginning the actual production, as it can
be seen in Figure 5.15. For the design, the assembly model of the product may be
decomposed in a characteristic hierarchy with definite assembly sequences. For the
production, the industrial worker can obtain relevant visual information with the
use of these sequences. Those may be adapted according to the current stage of the
assembly. The overall development of the product can considerably prosper using
this system, resulting to a significant decrease in lead time (initiation - execution
latency), cost reduction and quality improvement Caudell & Mizell (1992).

Figure 5.15: Preview of final product with augmented visualisation Blaga & Tamas
(2018)
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When talking about visualising a 3D assembly scenario, the first phase is syn-
chronising in real-time the real with the virtual in the shortest time possible. We
need to take into account the constant need for space calibration so that the real
and virtual scene are kept aligned in space for the final stage of one, stable system
Martı́n-Gutiérrez & Ginters (2013). For this reason, one of the methods that can be
used to identify essential elements and their position is the marker method. With
this, HMD calibration can be done as well. Furthermore, the human-robot collab-
oration setting needs to be tuned by calculating the structural connection between
the robotic space and device to be operated on. Thus, accurate links between the
position and orientation of involved equipments in the scenario are obtained.

To develop an AR application having robot collaboration, an important step is
accounting for the disparity between real points of reference for the involved tech-
nologies that determine their respective locations. In these circumstances, the robot
may get imprecise data regarding the operator’s place. In turn, the operator can
receive misleading information related to the robotic workspace. To straighten this
out, the correct turning transformations need to be computed, along with calculating
the position of virtual items in the workspace of the robot. It is worth taking into
account human-robot collaboration safety matters, where attention and alertness of
humans is unsatisfactory.

Implementing AR applications require dedicated software and hardware. Spe-
cialised equipment like HMDs and proper trackers must be attained Nee et al.
(2012). When considering hardware, an appropriate wearable device is required
so that is favourable for the entire system. Characteristics such as size, weight and
portability are considered when talking about manufacturing tasks, which needs to
assist the industrial worker all day. In order to avoid severely reducing data that
can be visualised at once, a convenient field of view may be also chosen Syberfeldt
et al. (2017).

There are many potential use cases in manufacturing scenarios: production,
training, maintenance. In this paper, the focus is on tasks involving step by step
operations, risk and safety management, as well as refining design and visualisa-
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tion. Completing tasks in time and error reducement are desirable outcomes when
using AR.

The main problem to be addressed is a stable connection and transmission of
information between AR, with HoloLens, and the robotic workspace, using Robot
Operating System (ROS). The current pose of the device and the pose of the marker
identified using marker detection is sent to ROS. This data is transformed in ROS
messages and then used as frames for the transform (tf) tree. ROS also transmits
back the pose of the right end-effector, used for the assembly scenario. This infor-
mation is needed in order to accurately augment the next element to be assembled
for the finalising product, as it may be seen in Figure 5.15.

First of all, the camera of the HoloLens needs to be calibrated so that the finest
tracking accuracy is obtained, specifically when glancing straight into a flat marker.
For this type of device, lens distortion in the video image that is displayed may be
removed as well. In order to accomplish this, the tool ARToolKit ART (2018) was
combined with camera calibration from OpenCV ope (2018). Parameters of the
camera may be found using explicit calibration algorithms Blaga & Tamas (2018).

With ARToolKit and a see-through device, in this case HoloLens, virtual items
can be superimposed in the real setting. Computing positions of virtual elements
in the 3D space is done by identifying and tracking square markers in the real
space. Camera view video is captured by the camera and sent to the software which
searches for fiducial markers in each frame of the video. If any with the pattern is
identified, the software then calculates the square position, as well as the orienta-
tion of the pattern, considering the camera. After this data is known, a virtual model
with relative calibration is drawn, as it can be seen in in Figure 5.16.

For the ARToolKit with HoloLens integration, a Universal Windows Platform
(UWP) wrapper was used. It also contained the marker recognition and tracking
algorithms. Knowing the camera parameters and the pattern of the marker, the
accuracy of the parameters can be verified. A custom virtual item can be visualised.
The marker recognition and tracking procedures found in the kit may determine the
position of the object.
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The HoloLens application is communicating with the robotic workspace through
a common protocol with the Rosbridge package. This yields an interface between
ROS and JSON, in particular for non-ROS applications, as one can visualise in Fig-
ure 5.17. In order to send data from HoloLens to ROS, custom C# classes were
created so that they can simulate the message type that needs to be received by the
ROS service. For this, Hololens’ current position and orientation is send, as well as
the transform of the initial marker for the pattern that is tracked. To receive this, the
service callback gets the data and, with the help of a ROS publisher, it publishes the
information on the /tf topic. The transform between the robot’s right end-effector
and the HoloLens’ initial position is computed, resulting in the element of the robot
transform with respect to the device’s coordinate system. This transform is the re-
sponse for the HoloLens application. The transforms can be seen in Figure 5.18.

HoloLens development system using Unity3D has a left-handed coordinate sys-
tem. ROS works with a right-handed coordinate system. In this situation, the con-
versions between left-handed to right-handed and back need to be computed.

In order to finalise the conversions, further calculations needs to be done so that

Figure 5.16: Visualisation of the real object and the AR marker during calibration
Blaga & Tamas (2018)
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Figure 5.17: Rosbridge communication between cobot and AR device Blaga &
Tamas (2018)

the HoloLens’ system is represented in the robotic coordinate system. This can be
written as:

T G
H = T X

H ·T G
X

To convert from ROS to HoloLens, the inverse computations need to be ad-
dressed. This is defined by transform multiplication:

T H
G = T G

Z ·T H
Z

The extra step needs to be done here as well, where the right-handed HoloLens
is computed to the left-handed classic one, the same inversion type as mentioned
above.

The pose estimation of the Hololens HMD in the coordinate system of the robot
is done by estimating the spatial relation among them. This was achieved by at-
teching the camera to the robot arm, and recording several arm-camera data pairs
and from this estimating the cross calibration between them kth (2018). For this to
be feasible, the Hololens’ position considering its start position is already known
(device having motion tracking), the start position does not change in relation to the
base of the robot. The end-effector pose is also prior computed, with respect to the
base. In order to find the unknowns, multiple samples are used. These are gathered
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Figure 5.18: Frames used in the application Blaga & Tamas (2018)

by having the end-effector move in a variety of positions and angles, managing to
cover a large range.

Having a multitude of samples that were measured, relative calibration can be
greatly improved, in such a way that the virtual element may be precisely spatially
aligned with the real items.

5.4.3 AR and robot external calibration

For the path visualisation application (section 5.4.4.1), a different calibration algo-
rithm was used, as this is particular to each robot used in the experiments.

In case of the Google Tango AR device, the self-localisation was not performed
accurately enough, so to re-calibration was needed before each experiment. In or-
der to speed-up the external calibration procedure, a straightforward method was
chosen, described below.

Both devices (AR and mobile robot) run motion tracking algorithms, each one
having its own coordinate system. To create a cross link between the two coordinate
systems, the AR device is placed on top of the robot, in a predefined position. Then,
the computation of a rigid homogeneous calibration transform is done, as follows:

T RW
ARW = T AR

ARW ·T R
AR ·T RW

R
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where RW stands for Robot World coordinate frame, R is the Robot, AR is the AR
Device and ARW is the AR World (see Figure 5.19c). T AR

ARW is the pose of AR
device, obtained from motion tracking. T R

AR is constant, measured manually. T RW
R

is inverse of robot pose, from motion tracking.
The calibration procedure is the following:

1. User places AR device on top of the mobile robot, in the predefined posi-
tion. Then, send a signal to the Calibration module in order to compute the
calibration transform.

2. User takes AR device and points the camera towards robot.

3. When the mobile robot receives a goal, it plans a path from its current position
to the desired one. Each waypoint in the path is converted into AR World
coordinate frame, then sent to the AR device.

Using this method, a transform from Robot World to AR World is obtained, with
absolute precision up to 10cm in the robot coordinate frame system, the radius of
the robot being a half meter.

5.4.4 Experimental results

5.4.4.1 Path visualisation application

The main goal is to improve the safety of workers and automated guided vehicle
(AGV). In this section, an application for visually inspecting robot’s path is de-
scribed. As seen in Figure 5.19a, the application draws AGV’s computed path over
live images of the environment. The user checks if the drawn path intersects any
obstacles and, in that case, stops the AGV.

In this implementation, existing technologies are reused. We use TurtleBot as
AGV, which has a navigation stack available in ROS Foote (2018). This includes
motion tracking, planning and executing paths. Regarding the AR device, Google

130



5.4 Augemented Reality Based Monitoring

(a) AR device image
(b) Architecture

(c) Calibration frames

Figure 5.19: Path visualisation

Tango Marder-Eppstein (2016) technology powered device is chosen, having mo-
tion tracking and augmented reality technologies out-of-the-box. The two devices
communicate with wireless network using ROS framework, with additional An-
droid support for the AR device.

Figure 5.19b shows the main components of the application, highlighting our
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contribution. That is an external calibration algorithm, described in Section 5.4.3,
as well as a rendering procedure. Experiments were performed in order to determine
the quality of AR visualisation.

The application has multiple steps:

1. Calibrate device (see Section 5.4.3)

2. AR device overlays transformed path on live images. More specifically, each
pair of consecutive way-points is converted into a cylinder. The pose of a
cylinder C having its endpoints P1 and P2 can be computed as follows (see
Figure 5.20):

• Position: C = P1+P2
2

• Orientation: the half-way quaternion between OZ (default cylinder ori-
entation) and P1P2

• Compute rotxyz = OZ×dir

• Compute rotw = 1+OZ •dir

• Normalize rot

3. In case of danger, the user may stop the robot. While the AGV is moving, it
repeatedly recomputes the trajectory. Therefore, the displayed path is updated
on the AR device screen, providing real-time visualisation as this can be seen
in in Figure 5.19a.

In this case, the planner produces a large number of waypoints, with small dis-
tance between them. Therefore, the AR device has a low frame rate. To overcome
the issue, the Douglas-Peucker algorithm is employed Douglas & Peucker (1973),
which reduces the number of points on a path without modifying its shape.

In the experiments, the distance between AGV real position and the one shown
on AR device is manually measured. The initial error (measured right after cali-
bration) is, on average, 0.1m. After the robot travels 10m, the accumulated mean
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(a) Translation (b) Rotation

Figure 5.20: Rendering cylinder between two points

error is 0.25m (smaller than robot diameter). Hence the AGV can be used in a safe
manner for path planning and visualisation applications.

5.4.4.2 Robot state visualisation

At certain moments it is of great importance to know what the robot coworker is
doing. Thus, by visualising certain variables, parameters that make up its state, a
deeper understanding of its actions can be gained. The human coworker is offered
a set of tools, capable of performing diagnostic, safety stop and restart operations,
with the main goal of enhancing safety level and maintenance parameters of the
manufacturing process.

The developed application is to be used on a Microsoft HoloLens device and
exposes data from the ROS environment existent on the robot. The communication
of the two entities, robot and HoloLens, is facilitated by the rosbridge package, the
entities exchanging messages in JSON format.

The application is composed of three panels: connectivity, advanced and ex-
tended options panel. At first, only the connectivity panel is shown, as its name
suggests the facilitation of the connection procedures with the ROS environment
present on the Baxter robot. If the connection is successful the advanced panel
will pop up. The advanced panel contains functionality for sending/receiving in-
formation from the ROS environment. It also contains indicators relevant to the
activities performed by the robot. The human user can query information about the
running nodes and published topics, as well as mandatory nodes. The global state
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of the robot can be inferred from the information contained in this panel. There
are three indicators that will change their colour in red or green, depending on the
sub-modules that reflect the robot’s activity state.

In case of malfunction, the advanced options panel will allow the user to perform
safety stop, restart actions, etc. More precisely, the human can check the running
state of a certain node, it can start a chosen node or it may stop different nodes that
are not running properly.

Figure 5.21: Performing a status check using the monitoring tool

Figure 5.22: The components of the monitoring tool

More details regarding this application can be seen in the video 1.

1https://youtu.be/3AR9hE6JKh0
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For this application we relied on the default external calibration of the Hololens
device, which was sufficiently precise for visualisation purposes. The only custom
setup is related to the predefined position of the smart glass in the startup phase:
this is placed in a predefined position in the workspace of the robot, thus having an
instant cross calibration with the frame of the robot.

5.4.4.3 Digital twin visualisation

The use of digital twin got widespread with the appearance of the low cost 3D
printing solutions. The real product that needs to be assembled is virtually cloned
using CAD modelling. This procedure can precisely simulate the physical traits,
the virtual model being considered a digital twin for the real one. This model was
divided into several components so that a definite ranking may be determined so
that a convenient sequence is organised, as it can be seen in Figure 5.23.

Figure 5.23: CAD model with augmented part (blue)

In order to execute the extrinsic calibration of the HoloLens camera, differ-
ent algorithms were used so that calibration error is minimal. Using the provided
camera-robot calibration package, when starting the application, the user had to
change the pose of the HoloLens during the detection of the marker positioned on
the right end-effector of the robot, as well as moving the arm into a range of poses.
This was determined to be inefficient due to being a burden on the user and not
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task optimal for a single worker. Additionally, if marker detection fails in just one
iteration, the end result would be poor. By attaching the device to the end-effector,
the first task of the day is considerably improved, so that the calibration is better
approachable, as seen in Figure 5.24.

Figure 5.24: Calibration procedure with Baxter and HoloLens

The final application contains a light bulb’s CAD model. The robot’s right end-
effector holds the socket of the light bulb, whilst matching marker is fixed on the
arm. After the HoloLens application is started, the extrinsic calibration needs to
be executed. Proper calibration gives precise synchronisation between the real and
virtual elements, resulting in fitting spatial alignment. More than one iteration may
be needed for this. After being finished, the industrial user may visualise the virtual
components of the scene in their correct place, with respect to the coordinate system
of the HoloLens.

Some experiments were done to validate the calibration between HoloLens and
Baxter robot. In order to be able to properly repeat the tests, they were done in three
phases. In the first place, the right end-effector holds the device fixed, while the
normal procedure of the calibration is executed and its position taking into account
the gripper was documented. After, the HoloLens was fixed to the left end-effector,
recording its’ position again. After, the virtual component’s transformation of the
end-effector was compared with the real one, computing the degree in which the
virtual element is overlapping its physical correspondence.

For the ARCore system, experiments were done as well, but in a fairly different
fashion for some points. At the start of the application, after detecting and getting
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into the tracking regime, the virtual element is superimposed onto the real scenario.
Thus, the degree of overlapping for the virtual unit over the real one can be com-
puted, similar as above.

After repeating the individual procedures several times, the data that was ob-
tained was processed using two ways: the mean and the standard deviation. Firstly,
each of the samples and the mean for each component related to the device’s po-
sition with respect to the end-effectors was used in order to compute their corre-
sponding Eucledian distances. The resulting errors for each end-effector were used
to determine the data’s mean and standard deviation. As it may be visualised in
Table 5.7, for the right end-effector the measurements are considerably lower than
the left one due to the calibration being done with the first. Next, the virtual element
superposition on the real one was calculated taking into account the pixel number
of the virtual which overlap the real component, converted into percentages. The
final data may be seen in Table 5.8. For the HoloLens system, a ≈ 58.83% mean is
determined, corresponding with the overlapping percentage, with ≈ 11.84% stan-
dard deviation. For the ARCore Application, the determined mean is ≈ 78.32%,
with ≈ 9.87% standard deviation.

Table 5.7: The output from the calibration process Blaga & Tamas (2018)

End-Effector Error Mean (cm) Error Standard Deviation (cm)
Right 0.47 0.19
Left 0.95 0.45

Table 5.8: The augmented and physical object overlapping

Mean (px) Standard Deviation (px)
Blaga & Tamas (2018) Overlap - HoloLens [%] 58.83 11.84

Overlap - ARCore [%] 78.32 9.87

After, the real assembly objects can be used simultaneously with the running ap-
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plication. At a particular moment, the industrial operator may visualise the match-
ing element that needs to be assembled and receive data about assembly informa-
tion, as well as its proper position and orientation. For this, the robot’s right end-
effector holds a part of the assembly, whilst the succeeding part may be displayed
using HoloLens. By having the response data given by ROS, being the pose of the
right end-effector with respect to the coordinate system of the device, the virtual
object’s pose is computed, taking into consideration the current pose of the physical
element as well. The overall application algorithm may be seen in Figure 5.25.

Figure 5.25: ARCore application algorithm

A modest alteration to the above mentioned scenario is that the robot may not
hold any part of the assembly, the real objects being positioned in only near the
robotic workspace, so that the end-effectors of the robot can reach the product and
still be able to aid the industrial operator in the assembly task. This application may
be visualised in Figure 5.27b.
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For this particular scenario, an AR-capable mobile device was used, having in-
tegrated the ARCore SDK in the application.

When the application launches, the transformation between the right end-effector
of the robot and the initial pose of the ARCore application is searched in order for
the robot component transform to be in the right coordinate system. Then, the data
is exchanged with ARCore with the help of this service. The overall architecture
may be visualised in Figure 5.26.

Figure 5.26: ARCore application architecture

To display the data regarding the currently tracked item, the industrial worker
only needs to tap on the device’s screen. This tap is converted from 2D to 3D
in order to compare its position to the 3D pose of the object. Then the requested
information may be visualised in a dialog. Several application snapshots may be
seen in Figure 5.27.

A comparison between the AR technologies used, HoloLens, ARCore and Google
Tango, was constructed in Table 5.9.
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(a) Task augmentation snapshot (b) Application outcome

Figure 5.27: ARCore application

HoloLens ARCore Google Tango Moverio BT300
Release Date 2016, March 2018, March 2014, June 2017, January
Development Status Stable Stable Discontinued Stable
Device Type Head-mounted Hand-held Hand-held Head-mounted
Cost $3,000 $280+ $500 $700
Documentation Vast Limited Withdrawn Updated
Depth Sensor Type 3 5 3 5

Localisation mode Motion tracking IMU + vodo IMU + vodo Vodo
ROS Integration Rosbridge Rosjava Rosjava Rosjava

Table 5.9: AR technologies comparison

5.5 Summary

In this chapter we showed an approach for the autonomous flight control of a quad-
copter in hallway-like environments. We used low-level image processing enhanced
with probabilistic filters which supports data fusion, while using a low-cost quad-
copter.

Next we presented a custom solution for the object manipulation in an indoor en-
vironment using a 7 DoF commercial robot with a 3D depth camera mounted close
to its gripper. We presented our solution to the scene parsing as well as planning
related problems for the object manipulation using different approaches.

Further on the task of sorting objects transported using a conveyor belt was han-
dled using an active perception approach. The proposed pipeline uses 3D data to
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classify the objects and computes the actions using a planner, after describing the
problem as a POMDP. The functionality of the pipeline was tested both in simula-
tion and on a real Baxter robot equipped with an Asus 3D sensor. A key point of
the approach is that it propagates information across multiple positions of interest
from the conveyor belt, thus reducing the total number of steps needed for sorting.

Beside this practical examples were presented for different experimental setups
in the AR domain relying on pose estimation. The common parts in these setups
were related to the external calibration of these devices with respect to other cam-
eras, e.g. mounted on different types of robots. The experiments are easy to repro-
duce following the detailed description of these setups as well using the code shared
by the authors.
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Advising and management activities

Past

During my research I had to chance to manage a great number of stundents both
from Romania and abroad. I have been involved as PhD coadvisor both at UT-
Cluj and at Szeged University, Hungary. The thesis defense of Robert Frohlich
from Szeged University took place in 2019 and the the on-going coadvised thesis of
Mezey-Ady Danie at the UTCluj is expected to be finished in 2021. Robert’s work
is related more to 5 while with Daniel we cooperate more on the topics presented
in 5. Beside this, I had the occasion to supervise BSc and MSc studnets at Bern
University during my research stay in 2014 who were involved in projects related
to 5.

I have successfully obtained funding for my research from a number of national
and international founds as PI:

• Two UEFISCDI national projects: Bridge grant type project BG39-2016 and
Innovation Cheques CI125-2018.

• One H2020 consortium workpackage project within the ROSIN call in 2019.

• One industrial project with the Vitirover company from France in 2017.

Beside this I have been involved in a number of national and international
projects as participant:
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• Sciex type postdoc project in Switzerland (acceptance rate less than 5%).

• 4D postdoc project in the period of 2010-2013.

• COST EU project COSCH in the period 2014-2017.

• OTKA founded project in the period 2018-2021.

• UEFISCDI-TE type projects from 2012 and 2016.

• H2020 RIA type project launched in 2020.

Both as PI and project member these projects contribute to the development of
the management skills required in a national and multi-national project setup.

As scientific&project meeting expertise, I must highlight COST local meeting
organized in 2015, the special session of AQTR organized in 2016 as well as the
role of main KEPAF conference organizer in 2017.

Future

In the future I will reuse the managing and advising capabilities earned during the
last years of activities especially in the projects where I was acting as PI. I expect a
clear contribution in the bridging activities between the academic–industrial sector,
as this requires a specific way of approaching the problems. I have experienced in
a number of industrial projects, that the results of my research in the robotics and
control engineering can be validated in a number of innovative projects.

More specifically I expect to have clear contribution on the transfer learning
for the end-to-end 3D perception systems in robotics applications from the leading
innovative industries. Also the MES related coworkers are in the focus of the future
research activities with the industry. Beside this we are expecting an important
demand from the agricultural robotics sector as well in terms of applied research
inquires towards our team.
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For the advising activities I expect that I will cooperate with a number of BSc,
MSc and PhD students. I expect to have coadvised topics from both from the aca-
demic and industrial field. Currently we expect to have at least 2-3 positions in the
field of robotics engineering with applied research orientation.

In order to maintain the balance between the fundamental and applied research I
expect to take part of both types of projects. Thus I intend to enlarge my networking
both in the academic and industrial fields.
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Research activities

In this part I will give a short overview of the past–current research activities (post
doctroal period) and I will highlight the near future and long term plans.

Past and current focus

In the post-doctoral period I focused more on the robotics domain and within this
domain the 3D perception related challenges. The state of the art for the depth
perception grow exponentially after the appearance of the low-cost depth cameras
such as Kinect for the consumer market.

Before having access to such a camera we constructed our own 3D sensor and
we followed the early stage development of the 3D data processing and robotics
tools such as PCL or ROS. This had an impact on our way of doing research and we
are still using and reusing the tools withing these frameworks developed in the last
10 years.

Beside the classical depth perception, we made experiments with heterogeneous
data, i.e. stereo depth, fused 2D-3D data which has a major interest even today
in the robotics community. These are fundamental building blocks for the object
recognition and pose estimation algorithms used heavily in this domain.

Recently, we managed to close the loop between the perception and discrete
action space for robots using probabilistic approaches. This is still an ongoing work
which has to be extended in order to make it feasible in real life applications as well.
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Near future goals

For the near future goals I will focus on the transfer learning techniques for the
robotics environment perception and mapping applications. This will hopefully
enable us to have end-to-end pipelines in the robot perception-action space.

As a first step we are focusing on the following topics

3D object localization The focus is on an end-to-end learning framework deliver-
ing a flexible, pointcloud sparseness independent way of localizing objects
in the surrounding of a robot. The proposed framework makes an explicit
segmentation and object recognition in the same time with a sufficiently high
rate that even for dynamics scenes (e.g. with people) can be adopted.

active perception The main aim of the research is to have an optimal view point
estimate for a moving camera base, e.g. a robot arm with a camera mounted
on it. This is essential in the coworking setup of an industrial robot in order
to cope with the uncertainties due to the human worker and the un-modeled
dynamics around the robot.

active mapping The main aim of the topic is to construct a versatile map repre-
sentation for navigating agent which can learn a predefined set of objects of
interests. The representation of the information is essential in this case, thus
different novel map representation techniques are planned to be used.

Long term goals

For the long term goals I am seeking service based recognition approaches for the
mobile robotics domain. This has both theoretical and practical challenges which
have to be solved in order to earn a flexible, reusable environment perception mod-
ule.

In order to develop such a complex perception module, several components have
to reused/integrated from the aforementioned short term research goals. The desired
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end-to-end module will highly depend on the architectural/fundamental develop-
ments of the AI based perception techniques.

In long term I am also planning to attract funding for this research both from
academic and industrial funding agencies in order to develop and maintain a re-
search group in the broad field of robotics.
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Teaching activities

Past

My teaching activity so far was involved in Romanian academic system beside the
invited talks given at different summer shools/semniar abroad (especially in Ger-
many, Hungary and Switzerland). At the UTCluj side I have been involved in two
main courses: Hydro-pneumatic control equipment and Manufacturing Execution
Systems. For the later one, the integration of the perception and robotics research
domain proved to be fruitful.

I actively take part in the university promoting for the high school, doing from 2
years a volunteer course in the field of robotics in high-schools. This helps to have
a better understanding among the young students of the engineering and indirectly
promoting the STEM values for them. In long term this means better motivated
students at the university and a larger number of young scientists for the next years.

Future

In the future I would like to extend the my teaching activities based on my industrial
experience and network connections. As in the engineering field is essential the
applied scientific approach of a problem, I will focus on both the theoretical and
practical aspects of the teaching curricula.

Based on the already established network with international companies such as
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Bosch, Fest , Baumann or Accenture we plan to extend the laboratory works using
the latest equipment and technologies from the control engineering and robotics
field.

In the future I also plan to get more involved in the promotion of the STEM
curricula for the high school students showing them the real benefits of the engi-
neering.
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BEERMANN, M., HANE, C., HENG, L., LEE, G.H., FRAUNDORFER, F., ISER,
R., TRIEBEL, R., POSNER, I., NEWMAN, P., WOLF, L.C., POLLEFEYS, M.,
BROSIG, S., EFFERTZ, J., PRADALIER, C. & SIEGWART, R. (2013). Toward
automated driving in cities using close-to-market sensors: An overview of the

156



REFERENCES

V-Charge Project. In Intelligent Vehicles Symposium, 809–816, Gold Coast City,
Australia. 4, 68

GEIGER, A., MOOSMANN, F., CAR, O. & SCHUSTER, B. (2012). Automatic cam-
era and range sensor calibration using a single shot. In International Conference
on Robotics and Automation, 3936–3943, IEEE. 69

GEIGER, A., LAUER, M., WOJEK, C., STILLER, C. & URTASUN, R. (2014).
3D Traffic Scene Understanding From Movable Platforms. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36, 1012–1025. 4, 68

GEYER, C. & DANIILIDIS, K. (2000). A unifying theory for central panoramic
systems. In European Conference on Computer Vision, 445–462, Dublin, Ireland.
79

GIRSHICK, R.B. (2015). Fast R-CNN. CoRR, abs/1504.08083. 55

GIRSHICK, R.B., DONAHUE, J., DARRELL, T. & MALIK, J. (2013). Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. CoRR,
abs/1311.2524. 55

GOMEZ-BALDERAS, J.E., FLORES, G., CARRILLO, L.G. & LOZANO, R. (2013).
Tracking a ground moving target with a quadrotor using switching control. Jour-
nal of Intelligent & Robotic Systems, 70, 65–78. 98

GONG, X., LIN, Y. & LIU, J. (2013). Extrinsic calibration of a 3d lidar and a
camera using a trihedron. Optics and Lasers in Engineering, 51, 394 – 401. 70

GORON, L.C., TAMAS, L., RETI, I. & LAZEA, G. (2010a). 3D Laser Scanning
System and 3D Segmentation of Urban Scenes. In Proceedings of the 17th IEEE
International Conference on Automation, Quality and Testing, Robotics (AQTR),
Cluj-Napoca, Romania. 12

157



REFERENCES

GORON, L.C., TAMAS, L., RETI, I. & LAZEA, G. (2010b). 3D laser scanning
system and 3D segmentation of urban scenes. In Automation Quality and Testing
Robotics (AQTR), 2010 IEEE International Conference, vol. 1, 1–5, IEEE. 13,
87

HANE, C., ZACH, C., COHEN, A., ANGST, R. & POLLEFEYS, M. (2013). Joint
3D Scene Reconstruction and Class Segmentation. 2013 IEEE Conference on
Computer Vision and Pattern Recognition, 97–104. 42

HAUSER, K. (2013). Recognition, prediction, and planning for assisted teleopera-
tion of freeform tasks. Autonomous Robots, 35, 241–254. 107

HERBST, E. & FOX, D. (2014). Active object segmentation for mobile robots.
Tech. rep. 105, 107

HERBST, E., HENRY, P. & FOX, D. (2014). Toward online 3-d object segmentation
and mapping. In ICRA, 3193–3200. 106

HERRERA C, D., KANNALA, J. & HEIKKILA, J. (2012). Joint depth and color
camera calibration with distortion correction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34, 1–8. 70, 71

HERVIER, T., BONNABEL, S. & GOULETTE, F. (2012). Accurate 3d maps
from depth images and motion sensors via nonlinear kalman filtering. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2012, Vilamoura, Algarve, Portugal, October 7-12, 5291–5297. 9, 11, 26

HIRANO, Y., KITAHAMA, K. & YOSHIZAWA, S. (2005). Image-based object
recognition and dexterous hand/arm motion planning using rrts for grasping
in cluttered scene. In 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Edmonton, Alberta, Canada, August 2-6, 2005, 2041–2046.
107

158



REFERENCES

HOLZ, D., NIEUWENHUISEN, M., DROESCHEL, D., STÜCKLER, J., BERNER,
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Gearing up and accelerating cross-fertilization between academic and industrial
robotics research in Europe:, vol. 94 of Springer Tracts in Advanced Robotics,
133–153, Springer International Publishing. 104, 106

HUITL, R., SCHROTH, G., HILSENBECK, S., SCHWEIGER, F. & STEINBACH,
E. (2012). TUMindoor: An extensive image and point cloud dataset for visual
indoor localization and mapping. In Proc. of the International Conference on
Image Processing, Orlando, FL, USA. 26

IP, C.Y., LAPADAT, D., SIEGER, L. & REGLI, W.C. (2002). Using shape distri-
butions to compare solid models. In Proceedings of the Seventh ACM Symposium
on Solid Modeling and Applications, SMA ’02, 273–280, ACM, New York, NY,
USA. 47

JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG, J., GIRSHICK,
R., GUADARRAMA, S. & DARRELL, T. (2014). Caffe: Convolutional architec-
ture for fast feature embedding. arXiv preprint arXiv:1408.5093. 55, 57

JOHNSON, A.E. & HEBERT, M. (1999). Using spin images for efficient object
recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell., 21,
433–449. 45

KANNALA, J. & BRANDT, S.S. (2006). A Generic Camera Model and Calibration
Method for Conventional, Wide-Angle, and Fish-Eye Lenses. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 28, 1335–1340. 68

KANTER, G. (2012). Robot manipulator control using stereo visual feedback. Tech.
rep. 107, 108

159



REFERENCES

KASINSKI, A. & SKRZYPCZYNSKI, P. (2001). Perception network for the team of
indoor mobile robots: concept, architecture, implementation. Engineering Appli-
cations of Artificial Intelligence, 14, 125–137. 9

KAUSHIK, R., XIAO, J., MORRIS, W. & ZHU, Z. (2009). 3d laser scan registra-
tion of dual-robot system using vision. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS’09, 4148–4153. 7, 9, 14

KHOSHELHAM, K. & ELBERINK, S.O. (2012). Accuracy and resolution of kinect
depth data for indoor mapping applications. Sensors, 12, 1437–1454. 11

KIRYATI, N., ELDAR, Y. & BRUCKSTEIN, A.M. (1991). A probabilistic Hough
transform. Pattern recognition, 24, 303–316. 97
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LANGE, S., SÜNDERHAUF, N., NEUBERT, P., DREWS, S. & PROTZEL, P. (2012).
Autonomous corridor flight of a UAV using a low-cost and light-weight RGB-D
camera. In Advances in Autonomous Mini Robots, 183–192, Springer. 98

LAVALLE, S.M. (2006). Planning Algorithms. Cambridge University Press, New
York, NY, USA. 107, 108

LAZEBNIK, S., SCHMID, C. & PONCE, J. (2005). A sparse texture representation
using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell., 27, 1265–
1278. 44, 45

LEVINSON, J. & THRUN, S. (2013). Automatic online calibration of cameras and
lasers. In Proceedings of Robotics: Science and Systems, Berlin, Germany. 70

LIBERZON, D. (2003). Switching in systems and control. Springer. 101

LIN, D., FIDLER, S. & URTASUN, R. (2013). Holistic Scene Understanding for
3D Object Detection with RGBD Cameras. In International Conference on Com-
puter Vision, Sydney, Australia, 1417–1424, IEEE Computer Society. 4, 68

LOWE, D.G. (2004a). Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60, 91–110. 13, 16

LOWE, D.G. (2004b). Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60, 91–110. 44

MAGNUSSON, M., DUCKETT, T. & LILIENTHAL, A.J. (2007). Scan Registration
for Autonomous Mining Vehicles Using 3D-NDT. Journal of Field Robotics, 24,
803–827. 7
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MIČUŠÍK, B. & PAJDLA, T. (2004). Para-catadioptric Camera Auto-calibration
from Epipolar Geometry. In Asian Conference on Computer Vision, vol. 2, 748–
753, Seoul, Korea South. 80

MILGRAM, P., TAKEMURA, H., UTSUMI, A. & KISHINO, F. (1994). Augmented
reality: A class of displays on the reality-virtuality continuum. 282–292. 122

MILITARU, C., MEZEI, A.D. & TAMAS, L. (2016a). Object handling in cluttered
indoor environment with a mobile manipulator. In 2016 IEEE International Con-
ference on Automation, Quality and Testing, Robotics (AQTR), 1–6, IEEE. 90,
116

MILITARU, C., MEZEI, D. & TAMAS, L. (2016b). Object handling in cluttered
indoor environment with a mobile manipulator. In AQTR 2016: International
Conference on Automation, Quality and Testing, Robotics. 58

MILITARU, C., MEZEI, A.D. & TAMAS, L. (2017). Lessons learned from a cobot
integration into MES. In ICRA - Recent Advances in Dynamics for Industrial
Applications Workshop, Singapore. 116

MIRZAEI, F.M., KOTTAS, D.G. & ROUMELIOTIS, S.I. (2012). 3d lidar-camera in-
trinsic and extrinsic calibration: Identifiability and analytical least-squares-based
initialization. The International Journal of Robotics Research, 31, 452–467. 68,
70, 71

MISHRA, R. & ZHANG, Y. (2012). A review of optical imagery and airborne lidar
data registration methods. The Open Remote Sensing Journal, 5, 54–63. 69

MITRA, J., KATO, Z., MARTI, R., OLIVER, A., LLADÓ, X., SIDIBÉ, D., GHOSE,
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